FLRF: Federated recommendation optimization for long-tail data distribution

IF 2.3 Q2 COMPUTER SCIENCE, THEORY & METHODS Array Pub Date : 2024-12-01 DOI:10.1016/j.array.2024.100371
Zaigang Gong , Siyu Chen , Qiangsheng Dai , Ying Feng , Jinghui Zhang
{"title":"FLRF: Federated recommendation optimization for long-tail data distribution","authors":"Zaigang Gong ,&nbsp;Siyu Chen ,&nbsp;Qiangsheng Dai ,&nbsp;Ying Feng ,&nbsp;Jinghui Zhang","doi":"10.1016/j.array.2024.100371","DOIUrl":null,"url":null,"abstract":"<div><div>Recommendation systems play a crucial role in real-world applications. Federated learning allows training recommendation systems without revealing users’ private data, thereby protecting user privacy. As a result, federated recommendation systems have gained increasing attention in recent years. However, The long-tail distribution problem of federated recommendation systems has not received enough attention. A small number of popular items receive most of the users’ attention, while a significantly larger number of less popular items receive feedback from only a small portion of users. Existing federated recommendation systems usually train on datasets with a long-tail distribution, which can easily lead to over fitting on a small number of popular items, reducing the diversity and novelty of recommendations and causing popularity bias. This paper proposes FLRF, a Federated Long-tail Recommendation Framework, which consists a long-tail recommendation model based on disentangled learning and a long-tail-aware aggregation method based on the attention mechanism. The long-tail recommendation model utilizes the idea of disentangled representation learning to explicitly disentangle the attractiveness of items into fame and niche. The long-tail-aware model aggregation, performs global attention aggregation on the model parameters of the fame part and self-attention aggregation on the model parameters of the niche part. We conduct comparative experiments on the three real-world datasets against the baseline methods in terms of accuracy and novelty. The experimental results show that the proposed framework can improve the diversity and novelty of recommendations without significantly impacting recommendation accuracy.</div></div>","PeriodicalId":8417,"journal":{"name":"Array","volume":"24 ","pages":"Article 100371"},"PeriodicalIF":2.3000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Array","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590005624000377","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Recommendation systems play a crucial role in real-world applications. Federated learning allows training recommendation systems without revealing users’ private data, thereby protecting user privacy. As a result, federated recommendation systems have gained increasing attention in recent years. However, The long-tail distribution problem of federated recommendation systems has not received enough attention. A small number of popular items receive most of the users’ attention, while a significantly larger number of less popular items receive feedback from only a small portion of users. Existing federated recommendation systems usually train on datasets with a long-tail distribution, which can easily lead to over fitting on a small number of popular items, reducing the diversity and novelty of recommendations and causing popularity bias. This paper proposes FLRF, a Federated Long-tail Recommendation Framework, which consists a long-tail recommendation model based on disentangled learning and a long-tail-aware aggregation method based on the attention mechanism. The long-tail recommendation model utilizes the idea of disentangled representation learning to explicitly disentangle the attractiveness of items into fame and niche. The long-tail-aware model aggregation, performs global attention aggregation on the model parameters of the fame part and self-attention aggregation on the model parameters of the niche part. We conduct comparative experiments on the three real-world datasets against the baseline methods in terms of accuracy and novelty. The experimental results show that the proposed framework can improve the diversity and novelty of recommendations without significantly impacting recommendation accuracy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Array
Array Computer Science-General Computer Science
CiteScore
4.40
自引率
0.00%
发文量
93
审稿时长
45 days
期刊最新文献
Effective depression detection and interpretation: Integrating machine learning, deep learning, language models, and explainable AI Stock price prediction with attentive temporal convolution-based generative adversarial network An attention based residual U-Net with swin transformer for brain MRI segmentation Mining area skyline objects from map-based big data using Apache Spark framework SAD: Self-assessment of depression for Bangladeshi university students using machine learning and NLP
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1