S-scheme heterojunction photocatalysts based on 2D materials

IF 22 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Materials Today Pub Date : 2024-12-01 DOI:10.1016/j.mattod.2024.10.006
Wang Wang , Bei Cheng , Guoqiang Luo , Jiaguo Yu , Shaowen Cao
{"title":"S-scheme heterojunction photocatalysts based on 2D materials","authors":"Wang Wang ,&nbsp;Bei Cheng ,&nbsp;Guoqiang Luo ,&nbsp;Jiaguo Yu ,&nbsp;Shaowen Cao","doi":"10.1016/j.mattod.2024.10.006","DOIUrl":null,"url":null,"abstract":"<div><div>As an emerging photocatalytic system for the use of solar energy, step-scheme (S-scheme) heterojunction has demonstrated its high efficiency and prospect in the realms of energy conversion and environment treatment. To provide a deep understanding of the superiority of the S-scheme heterojunction in photocatalysis, the history and evolution of the S-scheme heterojunction are revisited and covered based on the challenges and issues faced by single photocatalysts and other types of heterojunctions. Afterwards, the design principle and characterization techniques of the S-scheme heterojunction are summarized and reviewed. Owing to the unique structural features with fascinating electronic, photonic, and chemical properties, two-dimensional (2D) materials have been widely used in the construction of the S-scheme heterojunctions. Based on the contact mode of the two components, the S-scheme heterojunction based on the 2D materials can be classified into 0D/2D, 1D/2D and 2D/2D heterojunctions. The versatility of the combinations provides 2D-based heterostructures plenty of intriguing physio-chemical properties, making them promising candidates for the photocatalysis of many critical reactions. Herein, the latest updates for the development of the 2D materials-based S-scheme heterojunctions are presented and discussed. Moreover, the challenges and future directions for the S-scheme heterojunctions are critically approached and outlined.</div></div>","PeriodicalId":387,"journal":{"name":"Materials Today","volume":"81 ","pages":"Pages 137-158"},"PeriodicalIF":22.0000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S136970212400230X","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

As an emerging photocatalytic system for the use of solar energy, step-scheme (S-scheme) heterojunction has demonstrated its high efficiency and prospect in the realms of energy conversion and environment treatment. To provide a deep understanding of the superiority of the S-scheme heterojunction in photocatalysis, the history and evolution of the S-scheme heterojunction are revisited and covered based on the challenges and issues faced by single photocatalysts and other types of heterojunctions. Afterwards, the design principle and characterization techniques of the S-scheme heterojunction are summarized and reviewed. Owing to the unique structural features with fascinating electronic, photonic, and chemical properties, two-dimensional (2D) materials have been widely used in the construction of the S-scheme heterojunctions. Based on the contact mode of the two components, the S-scheme heterojunction based on the 2D materials can be classified into 0D/2D, 1D/2D and 2D/2D heterojunctions. The versatility of the combinations provides 2D-based heterostructures plenty of intriguing physio-chemical properties, making them promising candidates for the photocatalysis of many critical reactions. Herein, the latest updates for the development of the 2D materials-based S-scheme heterojunctions are presented and discussed. Moreover, the challenges and future directions for the S-scheme heterojunctions are critically approached and outlined.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于二维材料的s -图式异质结光催化剂
作为一种新兴的利用太阳能的光催化体系,S-scheme异质结在能量转换和环境处理领域显示出其高效率和广阔的应用前景。为了深入了解s型异质结在光催化中的优势,本文基于单一光催化剂和其他类型异质结所面临的挑战和问题,对s型异质结的历史和发展进行了回顾和介绍。然后,对s型异质结的设计原理和表征技术进行了总结和评述。二维(2D)材料由于其独特的结构特征以及令人着迷的电子、光子和化学性质,被广泛用于构建S-scheme异质结。基于二维材料的s型异质结可分为0D/2D、1D/2D和2D/2D异质结。这些组合的多功能性为基于2d的异质结构提供了许多有趣的物理化学性质,使它们成为许多关键反应光催化的有希望的候选者。本文介绍和讨论了基于二维材料的s型异质结的最新进展。此外,对S-scheme异质结的挑战和未来方向进行了批判性的探讨和概述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Materials Today
Materials Today 工程技术-材料科学:综合
CiteScore
36.30
自引率
1.20%
发文量
237
审稿时长
23 days
期刊介绍: Materials Today is the leading journal in the Materials Today family, focusing on the latest and most impactful work in the materials science community. With a reputation for excellence in news and reviews, the journal has now expanded its coverage to include original research and aims to be at the forefront of the field. We welcome comprehensive articles, short communications, and review articles from established leaders in the rapidly evolving fields of materials science and related disciplines. We strive to provide authors with rigorous peer review, fast publication, and maximum exposure for their work. While we only accept the most significant manuscripts, our speedy evaluation process ensures that there are no unnecessary publication delays.
期刊最新文献
Editorial Board Experimental and computational advancement of cathode materials for futuristic sodium ion batteries Aminophosphonate-Derived lipid nanoparticles enable circular RNA delivery for functional recovery after spinal cord injury Microhole array metasurface-enhanced InAs/GaSb superlattice LWIR detectors with boosted photoresponse via guided-mode resonance coupling Concrete: From infrastructure to structural energy storage
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1