Highly silanized cellulose biocomposites for sustainable insulation materials

IF 22 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Materials Today Pub Date : 2024-12-01 DOI:10.1016/j.mattod.2024.10.012
Long Zhu , Abdullah Islam , Farid Alinejad , Stanislav I. Stoliarov , Shenqiang Ren
{"title":"Highly silanized cellulose biocomposites for sustainable insulation materials","authors":"Long Zhu ,&nbsp;Abdullah Islam ,&nbsp;Farid Alinejad ,&nbsp;Stanislav I. Stoliarov ,&nbsp;Shenqiang Ren","doi":"10.1016/j.mattod.2024.10.012","DOIUrl":null,"url":null,"abstract":"<div><div>Microfibrillated lignocellulose networks, derived from agricultural byproducts, represent an environmentally friendly biogenic material production due to their abundant availability to circular bioeconomy and inherent carbon sink in life cycle analysis. Yet, its vulnerability to moisture and flammability, coupled with challenges in creating highly reinforced insulation materials, poses challenges for the carbon-zero green building sector. Here we address these challenges with a new concept of in-situ grafting polymerization of nanoporous silica in pre-formed lignocellulosic fiber networks. The seamlessly integrating nanoporous silica with cellulose through hydrogen bonding networks enabled us to prepare highly reinforced biogenic composites for green building insulations. A high reinforcement biocomposite with hierarchal arrangements of nanoporous silica within the cellulose network exhibits remarkable attributes. It boasts a thermal conductivity of 24.2 mW·m<sup>−1</sup>·K<sup>−1</sup>, a flexural modulus of 942 MPa, and soundproofing with a 20.8 % noise reduction, as well as the fire resistance characterized by an extended time to ignition and a reduced peak heat release rate of 144 kW·m<sup>−2</sup> at 35 kW·m<sup>−2</sup> of incident radiant heat flux. Furthermore, it demonstrates a reduced water absorption capacity, dropping from 5.12 g·g<sup>−1</sup> to 0.75 g·g<sup>−1</sup>. Overall, this study opens the new pathways towards sustainable carbon-zero building materials in the context of circular bioeconomy.</div></div>","PeriodicalId":387,"journal":{"name":"Materials Today","volume":"81 ","pages":"Pages 95-103"},"PeriodicalIF":22.0000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1369702124002360","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Microfibrillated lignocellulose networks, derived from agricultural byproducts, represent an environmentally friendly biogenic material production due to their abundant availability to circular bioeconomy and inherent carbon sink in life cycle analysis. Yet, its vulnerability to moisture and flammability, coupled with challenges in creating highly reinforced insulation materials, poses challenges for the carbon-zero green building sector. Here we address these challenges with a new concept of in-situ grafting polymerization of nanoporous silica in pre-formed lignocellulosic fiber networks. The seamlessly integrating nanoporous silica with cellulose through hydrogen bonding networks enabled us to prepare highly reinforced biogenic composites for green building insulations. A high reinforcement biocomposite with hierarchal arrangements of nanoporous silica within the cellulose network exhibits remarkable attributes. It boasts a thermal conductivity of 24.2 mW·m−1·K−1, a flexural modulus of 942 MPa, and soundproofing with a 20.8 % noise reduction, as well as the fire resistance characterized by an extended time to ignition and a reduced peak heat release rate of 144 kW·m−2 at 35 kW·m−2 of incident radiant heat flux. Furthermore, it demonstrates a reduced water absorption capacity, dropping from 5.12 g·g−1 to 0.75 g·g−1. Overall, this study opens the new pathways towards sustainable carbon-zero building materials in the context of circular bioeconomy.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于可持续保温材料的高硅化纤维素生物复合材料
微纤化木质纤维素网络来源于农业副产品,由于其丰富的循环生物经济可用性和生命周期分析中固有的碳汇,代表了一种环境友好的生物材料生产。然而,它的易受潮性和可燃性,再加上制造高强度绝缘材料的挑战,为零碳绿色建筑行业带来了挑战。在这里,我们提出了一种新的概念,即在预先形成的木质纤维素纤维网络中原位接枝聚合纳米多孔二氧化硅。通过氢键网络将纳米多孔二氧化硅与纤维素无缝结合,使我们能够为绿色建筑保温材料制备高强度的生物复合材料。高增强生物复合材料与层次排列的纳米多孔二氧化硅内的纤维素网络表现出显著的属性。它的导热系数为24.2 mW·m−1·K−1,弯曲模量为942 MPa,隔音降噪20.8%,耐火性能表现为点火时间延长,在入射辐射热流为35 kW·m−2时,峰值放热率降低了144 kW·m−2。吸水率从5.12 g·g−1下降到0.75 g·g−1。总的来说,本研究为循环生物经济背景下的可持续零碳建筑材料开辟了新的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Materials Today
Materials Today 工程技术-材料科学:综合
CiteScore
36.30
自引率
1.20%
发文量
237
审稿时长
23 days
期刊介绍: Materials Today is the leading journal in the Materials Today family, focusing on the latest and most impactful work in the materials science community. With a reputation for excellence in news and reviews, the journal has now expanded its coverage to include original research and aims to be at the forefront of the field. We welcome comprehensive articles, short communications, and review articles from established leaders in the rapidly evolving fields of materials science and related disciplines. We strive to provide authors with rigorous peer review, fast publication, and maximum exposure for their work. While we only accept the most significant manuscripts, our speedy evaluation process ensures that there are no unnecessary publication delays.
期刊最新文献
Editorial Board Experimental and computational advancement of cathode materials for futuristic sodium ion batteries Aminophosphonate-Derived lipid nanoparticles enable circular RNA delivery for functional recovery after spinal cord injury Microhole array metasurface-enhanced InAs/GaSb superlattice LWIR detectors with boosted photoresponse via guided-mode resonance coupling Concrete: From infrastructure to structural energy storage
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1