Experimental studies on the influence of chlorides on the combustion and agglomeration characteristics of solid propellants

IF 7.2 2区 工程技术 Q1 CHEMISTRY, APPLIED Fuel Processing Technology Pub Date : 2024-12-10 DOI:10.1016/j.fuproc.2024.108172
Lu Liu , Geng Xu , Zhan Wen , Guoqiang He , Peijin Liu , Wen Ao
{"title":"Experimental studies on the influence of chlorides on the combustion and agglomeration characteristics of solid propellants","authors":"Lu Liu ,&nbsp;Geng Xu ,&nbsp;Zhan Wen ,&nbsp;Guoqiang He ,&nbsp;Peijin Liu ,&nbsp;Wen Ao","doi":"10.1016/j.fuproc.2024.108172","DOIUrl":null,"url":null,"abstract":"<div><div>The main approach to improving the performance of aluminum-containing propellants is to promote the rupture of the oxide film on the surface of aluminum. The high melting point of the oxide film is the primary obstacle to the oxidation reaction of the internal aluminum. This study proposes the concept of using chlorides to regulate the performance of propellants by leveraging the low melting point of aluminum chloride. Firstly, all four chlorides effectively promoted the oxidation of aluminum. Secondly, the combustion intensity of the powders, from highest to lowest, was: chlorinated polyvinyl chloride -modified aluminum powder, praseodymium chloride-modified aluminum powder, sodium chloride-modified aluminum powder, micron aluminum powder, and iron chloride-modified aluminum powder. Only chlorinated polyvinyl chloride significantly reduced the ignition delay time. Regarding the burning rate of propellants, iron chloride-modified propellants exhibited the best performance, while sodium chloride propellants showed a reduction in the burning rate. In terms of propellant agglomeration characteristics, sodium chloride aggravated agglomeration, whereas the other three inhibited agglomeration. Among them, iron chloride and praseodymium chloride reduced the average particle size of the condensed combustion products by 23.5 % and 43.0 %, respectively. The experimental results of this study provided a new approach for the performance optimization of solid propellants.</div></div>","PeriodicalId":326,"journal":{"name":"Fuel Processing Technology","volume":"267 ","pages":"Article 108172"},"PeriodicalIF":7.2000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fuel Processing Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378382024001425","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

The main approach to improving the performance of aluminum-containing propellants is to promote the rupture of the oxide film on the surface of aluminum. The high melting point of the oxide film is the primary obstacle to the oxidation reaction of the internal aluminum. This study proposes the concept of using chlorides to regulate the performance of propellants by leveraging the low melting point of aluminum chloride. Firstly, all four chlorides effectively promoted the oxidation of aluminum. Secondly, the combustion intensity of the powders, from highest to lowest, was: chlorinated polyvinyl chloride -modified aluminum powder, praseodymium chloride-modified aluminum powder, sodium chloride-modified aluminum powder, micron aluminum powder, and iron chloride-modified aluminum powder. Only chlorinated polyvinyl chloride significantly reduced the ignition delay time. Regarding the burning rate of propellants, iron chloride-modified propellants exhibited the best performance, while sodium chloride propellants showed a reduction in the burning rate. In terms of propellant agglomeration characteristics, sodium chloride aggravated agglomeration, whereas the other three inhibited agglomeration. Among them, iron chloride and praseodymium chloride reduced the average particle size of the condensed combustion products by 23.5 % and 43.0 %, respectively. The experimental results of this study provided a new approach for the performance optimization of solid propellants.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Fuel Processing Technology
Fuel Processing Technology 工程技术-工程:化工
CiteScore
13.20
自引率
9.30%
发文量
398
审稿时长
26 days
期刊介绍: Fuel Processing Technology (FPT) deals with the scientific and technological aspects of converting fossil and renewable resources to clean fuels, value-added chemicals, fuel-related advanced carbon materials and by-products. In addition to the traditional non-nuclear fossil fuels, biomass and wastes, papers on the integration of renewables such as solar and wind energy and energy storage into the fuel processing processes, as well as papers on the production and conversion of non-carbon-containing fuels such as hydrogen and ammonia, are also welcome. While chemical conversion is emphasized, papers on advanced physical conversion processes are also considered for publication in FPT. Papers on the fundamental aspects of fuel structure and properties will also be considered.
期刊最新文献
Photosynthesis of polypyyrole/ZnFe2O4-WO3 nanocomposite for biodiesel production Chemometrics to connect feedstock quality, process settings and calorific value of hydrochar through infrared spectra Direct reduction of vanadium titanium pellets using ammonia as a reductant: Thermodynamics, characteristics, and kinetics analysis Recent advances in biotechnology and bioengineering for efficient microalgal biofuel production Palm oil deoxygenation with glycerol as a hydrogen donor for renewable fuel production using nickel-molybdenum catalysts: The effect of support
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1