Study of the mechanism of high-efficient in-situ SO2 fixation during oxidative roasting of high‑sulfur iron ores and DFT calculation

IF 7.2 2区 工程技术 Q1 CHEMISTRY, APPLIED Fuel Processing Technology Pub Date : 2024-12-18 DOI:10.1016/j.fuproc.2024.108171
Xiaojiao Chen , Yuming Ren , Wenjun Gao , Na Zhao
{"title":"Study of the mechanism of high-efficient in-situ SO2 fixation during oxidative roasting of high‑sulfur iron ores and DFT calculation","authors":"Xiaojiao Chen ,&nbsp;Yuming Ren ,&nbsp;Wenjun Gao ,&nbsp;Na Zhao","doi":"10.1016/j.fuproc.2024.108171","DOIUrl":null,"url":null,"abstract":"<div><div>The development and utilization of high‑sulfur iron ore in China has provided abundant raw materials for the iron and steel industry, but it has also created severe environmental challenges, particularly in controlling sulfur dioxide emissions. Although the current sulfur-fixation technology has made some progress, it still has limitations such as low efficiency and less stability. This study will in-depth explore the mechanism of in-situ sulfur fixation with the aim of solving aforementioned issues and realizing the transition from terminal desulphurization to process control. Firstly, the effects of oxidation roasting temperature, oxygen concentration, gas flow rate and sulfur-fixation agent concentration on the sulfur-fixation efficiency were investigated to determine the regulation mechanism of sulfur fixation technology. Moreover, the sulfur-fixation activities of CaO and MgO were also compared in depth by Density Functional Theory (DFT) calculation in terms of surface adsorption energy, transition state and partitioned density of states (PDOS). Finally, the sulfur-fixation mechanism was analyzed in depth by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) tests in terms of phase composition, crystal structure and surface morphology. Therefore, the work will present basic theory and systematic guidance for in-site sulfur-fixation of high‑sulfur iron ore under oxidation roasting process.</div></div>","PeriodicalId":326,"journal":{"name":"Fuel Processing Technology","volume":"267 ","pages":"Article 108171"},"PeriodicalIF":7.2000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fuel Processing Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378382024001413","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

The development and utilization of high‑sulfur iron ore in China has provided abundant raw materials for the iron and steel industry, but it has also created severe environmental challenges, particularly in controlling sulfur dioxide emissions. Although the current sulfur-fixation technology has made some progress, it still has limitations such as low efficiency and less stability. This study will in-depth explore the mechanism of in-situ sulfur fixation with the aim of solving aforementioned issues and realizing the transition from terminal desulphurization to process control. Firstly, the effects of oxidation roasting temperature, oxygen concentration, gas flow rate and sulfur-fixation agent concentration on the sulfur-fixation efficiency were investigated to determine the regulation mechanism of sulfur fixation technology. Moreover, the sulfur-fixation activities of CaO and MgO were also compared in depth by Density Functional Theory (DFT) calculation in terms of surface adsorption energy, transition state and partitioned density of states (PDOS). Finally, the sulfur-fixation mechanism was analyzed in depth by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) tests in terms of phase composition, crystal structure and surface morphology. Therefore, the work will present basic theory and systematic guidance for in-site sulfur-fixation of high‑sulfur iron ore under oxidation roasting process.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Fuel Processing Technology
Fuel Processing Technology 工程技术-工程:化工
CiteScore
13.20
自引率
9.30%
发文量
398
审稿时长
26 days
期刊介绍: Fuel Processing Technology (FPT) deals with the scientific and technological aspects of converting fossil and renewable resources to clean fuels, value-added chemicals, fuel-related advanced carbon materials and by-products. In addition to the traditional non-nuclear fossil fuels, biomass and wastes, papers on the integration of renewables such as solar and wind energy and energy storage into the fuel processing processes, as well as papers on the production and conversion of non-carbon-containing fuels such as hydrogen and ammonia, are also welcome. While chemical conversion is emphasized, papers on advanced physical conversion processes are also considered for publication in FPT. Papers on the fundamental aspects of fuel structure and properties will also be considered.
期刊最新文献
Photosynthesis of polypyyrole/ZnFe2O4-WO3 nanocomposite for biodiesel production Chemometrics to connect feedstock quality, process settings and calorific value of hydrochar through infrared spectra Direct reduction of vanadium titanium pellets using ammonia as a reductant: Thermodynamics, characteristics, and kinetics analysis Recent advances in biotechnology and bioengineering for efficient microalgal biofuel production Palm oil deoxygenation with glycerol as a hydrogen donor for renewable fuel production using nickel-molybdenum catalysts: The effect of support
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1