{"title":"Preparation of ZIF-8 modified PAN/PU superhydrophobic-superoleophilic composite nanofiber membranes for oil/water separation and dye adsorption","authors":"Shaokang Fang, Yanan Li, Huizi Yu, Huirong Li, Shida Feng, Shuai Wang, Xiaoyu Chen, Jintong Li, Yushan Yuan, Xue Wang, Yue Yu, Hong Zhang","doi":"10.1016/j.reactfunctpolym.2025.106160","DOIUrl":null,"url":null,"abstract":"<div><div>It is still a great challenge to treat oily wastewater and organic dyes in a complex and variable water environment. In this study, polyacrylonitrile (PAN)/polyurethane (PU) was modified by the synthesis of porous nano-zeolite imidazolium skeleton (ZIF-8), and PAN/PU@ZIF-8 composite nanofiber membranes with high hydrophobicity were prepared by electrospinning technology. After the synergistic effect of ZIF-8 and PU, the prepared fibrous membranes showed excellent superhydrophobic properties with a contact angle of 150.5° to water in air. The prepared PAN/PU@ZIF-8 composite nanofiber membranes showed good separation effects on different oil/water mixtures and water-in-oil (W/O) emulsions, with oil fluxes of up to 6391.01 L·m<sup>−2</sup>·h<sup>−1</sup> for different oil/water mixtures and the separation efficiencies were all above 99.15 %. Meanwhile, the separation fluxes of several different W/O emulsions were up to 943.47 L·m<sup>−2</sup>·h<sup>−1</sup>, and the separation efficiencies were all above 98.6 %. Not only that, the PAN/PU@ZIF-8 composite nanofiber membrane possessed good adsorption effect on common organic dyes such as rhodamine B (RhB) and methylene blue (MB), and the maximum adsorption amount was up to 93.80 mg/g. Meanwhile, the removal of MB and RhB by the prepared nanofiber membrane was 96.84 % and 83.66 % within 3 h, respectively. In conclusion, we prepared a ZIF-8 doped superhydrophobic PAN/PU@ZIF-8 composite nanofiber membrane by electrospinning technology, which is capable of separating W/O emulsions. It is capable of separating W/O emulsion and adsorbing organic dyes at the same time, which provides a new vision and direction for the treatment of oily wastewater and organic dyes in the complex and variable water environment.</div></div>","PeriodicalId":20916,"journal":{"name":"Reactive & Functional Polymers","volume":"209 ","pages":"Article 106160"},"PeriodicalIF":4.5000,"publicationDate":"2025-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reactive & Functional Polymers","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1381514825000124","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
It is still a great challenge to treat oily wastewater and organic dyes in a complex and variable water environment. In this study, polyacrylonitrile (PAN)/polyurethane (PU) was modified by the synthesis of porous nano-zeolite imidazolium skeleton (ZIF-8), and PAN/PU@ZIF-8 composite nanofiber membranes with high hydrophobicity were prepared by electrospinning technology. After the synergistic effect of ZIF-8 and PU, the prepared fibrous membranes showed excellent superhydrophobic properties with a contact angle of 150.5° to water in air. The prepared PAN/PU@ZIF-8 composite nanofiber membranes showed good separation effects on different oil/water mixtures and water-in-oil (W/O) emulsions, with oil fluxes of up to 6391.01 L·m−2·h−1 for different oil/water mixtures and the separation efficiencies were all above 99.15 %. Meanwhile, the separation fluxes of several different W/O emulsions were up to 943.47 L·m−2·h−1, and the separation efficiencies were all above 98.6 %. Not only that, the PAN/PU@ZIF-8 composite nanofiber membrane possessed good adsorption effect on common organic dyes such as rhodamine B (RhB) and methylene blue (MB), and the maximum adsorption amount was up to 93.80 mg/g. Meanwhile, the removal of MB and RhB by the prepared nanofiber membrane was 96.84 % and 83.66 % within 3 h, respectively. In conclusion, we prepared a ZIF-8 doped superhydrophobic PAN/PU@ZIF-8 composite nanofiber membrane by electrospinning technology, which is capable of separating W/O emulsions. It is capable of separating W/O emulsion and adsorbing organic dyes at the same time, which provides a new vision and direction for the treatment of oily wastewater and organic dyes in the complex and variable water environment.
期刊介绍:
Reactive & Functional Polymers provides a forum to disseminate original ideas, concepts and developments in the science and technology of polymers with functional groups, which impart specific chemical reactivity or physical, chemical, structural, biological, and pharmacological functionality. The scope covers organic polymers, acting for instance as reagents, catalysts, templates, ion-exchangers, selective sorbents, chelating or antimicrobial agents, drug carriers, sensors, membranes, and hydrogels. This also includes reactive cross-linkable prepolymers and high-performance thermosetting polymers, natural or degradable polymers, conducting polymers, and porous polymers.
Original research articles must contain thorough molecular and material characterization data on synthesis of the above polymers in combination with their applications. Applications include but are not limited to catalysis, water or effluent treatment, separations and recovery, electronics and information storage, energy conversion, encapsulation, or adhesion.