Artificial intelligence and machine learning techniques for power quality event classification: a focused review and future insights

IF 6 Q1 ENGINEERING, MULTIDISCIPLINARY Results in Engineering Pub Date : 2024-12-31 DOI:10.1016/j.rineng.2024.103873
Indu Sekhar Samanta , Sarthak Mohanty , Shubhranshu Mohan Parida , Pravat Kumar Rout , Subhasis Panda , Mohit Bajaj , Vojtech Blazek , Lukas Prokop , Stanislav Misak
{"title":"Artificial intelligence and machine learning techniques for power quality event classification: a focused review and future insights","authors":"Indu Sekhar Samanta ,&nbsp;Sarthak Mohanty ,&nbsp;Shubhranshu Mohan Parida ,&nbsp;Pravat Kumar Rout ,&nbsp;Subhasis Panda ,&nbsp;Mohit Bajaj ,&nbsp;Vojtech Blazek ,&nbsp;Lukas Prokop ,&nbsp;Stanislav Misak","doi":"10.1016/j.rineng.2024.103873","DOIUrl":null,"url":null,"abstract":"<div><div>Power Quality (PQ) disturbances are critical in modern power systems, significantly impacting electrical networks' stability, reliability, and efficiency. With the increasing penetration of renewable energy sources, non-linear loads, and power electronic devices, the detection, classification, and mitigation of PQ disturbances have become more complex. Traditional PQ analysis methods, which rely heavily on human expertise and rule-based systems, are often insufficient in handling the growing complexity and volume of data in real-time applications. This review comprehensively analyzes the latest advancements in Artificial Intelligence (AI) and Machine Learning (ML) techniques applied to PQ analysis, achieving classification accuracies as high as 99.94 % with hybrid approaches like dual-tree wavelet packet transforms combined with extreme learning machine (ELM). Integrating advanced signal processing techniques, such as wavelet transforms and empirical mode decomposition, has demonstrated accuracy improvements of up to 5 % in challenging scenarios. This paper explores the challenges associated with AI-based PQ analysis, including the need for large datasets, overfitting issues, and the lack of interpretability in complex models. Future research directions are outlined, emphasizing the development of hybrid models, explainable AI systems, and real-time adaptability to dynamic grid conditions. This review provides a holistic understanding of state-of-the-art AI/ML methods in PQ analysis. It highlights their potential to transform modern power systems by ensuring higher reliability, better fault detection, and more efficient power delivery.</div></div>","PeriodicalId":36919,"journal":{"name":"Results in Engineering","volume":"25 ","pages":"Article 103873"},"PeriodicalIF":6.0000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590123024021169","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Power Quality (PQ) disturbances are critical in modern power systems, significantly impacting electrical networks' stability, reliability, and efficiency. With the increasing penetration of renewable energy sources, non-linear loads, and power electronic devices, the detection, classification, and mitigation of PQ disturbances have become more complex. Traditional PQ analysis methods, which rely heavily on human expertise and rule-based systems, are often insufficient in handling the growing complexity and volume of data in real-time applications. This review comprehensively analyzes the latest advancements in Artificial Intelligence (AI) and Machine Learning (ML) techniques applied to PQ analysis, achieving classification accuracies as high as 99.94 % with hybrid approaches like dual-tree wavelet packet transforms combined with extreme learning machine (ELM). Integrating advanced signal processing techniques, such as wavelet transforms and empirical mode decomposition, has demonstrated accuracy improvements of up to 5 % in challenging scenarios. This paper explores the challenges associated with AI-based PQ analysis, including the need for large datasets, overfitting issues, and the lack of interpretability in complex models. Future research directions are outlined, emphasizing the development of hybrid models, explainable AI systems, and real-time adaptability to dynamic grid conditions. This review provides a holistic understanding of state-of-the-art AI/ML methods in PQ analysis. It highlights their potential to transform modern power systems by ensuring higher reliability, better fault detection, and more efficient power delivery.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Results in Engineering
Results in Engineering Engineering-Engineering (all)
CiteScore
5.80
自引率
34.00%
发文量
441
审稿时长
47 days
期刊最新文献
Environmental occurrence, hazards, and remediation strategies for the removal of cadmium from the polluted environment Effect of fabrication techniques of high entropy alloys: A review with integration of machine learning An overview on the carbon deposited during dry reforming of methane (DRM): Its formation, deposition, identification, and quantification Recent developments in solar water heaters and solar collectors: A review on experimental and neural network analyses Influence of the typical twisted tape inserts into the inner tube of double-pipe heat exchanger: A limited review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1