{"title":"Application of natural and synthetic fibers in bio-based earthen composites: A state-of-the-art review","authors":"Amirhossein Jamaldar , Parsa Asadi , Mahdi Salimi , Meghdad Payan , Payam Zanganeh Ranjbar , Mahyar Arabani , Hadi Ahmadi","doi":"10.1016/j.rineng.2024.103732","DOIUrl":null,"url":null,"abstract":"<div><div>Bio-mediated ground improvement techniques, including Microbial Induced Calcite Precipitation (MICP) and Enzyme Induced Calcite Precipitation (EICP) treatment methods, are extensively being employed nowadays in a variety of construction projects as newly emerging sustainable and environmentally-friendly approaches to enhance the mechanical properties and durability characteristics of earthen composites. The intrinsic brittleness of MICP- and EICP-treated soils, however, considerably limits their applications in practical geotechnical engineering. Fiber reinforcement has been widely acknowledged as an efficient solution to overcome such challenges and augment the ductility of biologically stabilized soils. Accordingly, there is growing attention to integrating natural and synthetic fibers into bio-based composites, opening up exciting possibilities for improved performance and versatility in different civil engineering applications. This review aims to examine the current state of research on utilizing fiber additives to enhance the effectiveness of MICP and EICP treatment methods in an attempt to provide an in-depth insight into the effects of fiber type, content, and length as well as the underlying mechanisms of fiber interactions within the porous structure of such treated soils. The applications of fiber-reinforced bio-cemented soils, their limitations, and the major challenges encountered in practice, as well as the potential areas of interest for future research and the key factors to be considered when selecting suitable fiber for optimal soil treatment using MICP/EICP, are all critically elaborated and discussed. By synthesizing the current research findings, the study provides engineers with a valuable resource to guide the development and optimization of fiber-reinforced MICP and EICP techniques for effective soil improvement and stabilization. Based on the findings of all relevant studies in the literature, a comprehensive cost-performance-balance analysis is conducted aiming to serve as a useful guideline for researchers and practitioners interested in applying fibers in various construction projects or other related applications where either MICP or EICP technique is being utilized as the main soil stabilization approach.</div></div>","PeriodicalId":36919,"journal":{"name":"Results in Engineering","volume":"25 ","pages":"Article 103732"},"PeriodicalIF":6.0000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590123024019753","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Bio-mediated ground improvement techniques, including Microbial Induced Calcite Precipitation (MICP) and Enzyme Induced Calcite Precipitation (EICP) treatment methods, are extensively being employed nowadays in a variety of construction projects as newly emerging sustainable and environmentally-friendly approaches to enhance the mechanical properties and durability characteristics of earthen composites. The intrinsic brittleness of MICP- and EICP-treated soils, however, considerably limits their applications in practical geotechnical engineering. Fiber reinforcement has been widely acknowledged as an efficient solution to overcome such challenges and augment the ductility of biologically stabilized soils. Accordingly, there is growing attention to integrating natural and synthetic fibers into bio-based composites, opening up exciting possibilities for improved performance and versatility in different civil engineering applications. This review aims to examine the current state of research on utilizing fiber additives to enhance the effectiveness of MICP and EICP treatment methods in an attempt to provide an in-depth insight into the effects of fiber type, content, and length as well as the underlying mechanisms of fiber interactions within the porous structure of such treated soils. The applications of fiber-reinforced bio-cemented soils, their limitations, and the major challenges encountered in practice, as well as the potential areas of interest for future research and the key factors to be considered when selecting suitable fiber for optimal soil treatment using MICP/EICP, are all critically elaborated and discussed. By synthesizing the current research findings, the study provides engineers with a valuable resource to guide the development and optimization of fiber-reinforced MICP and EICP techniques for effective soil improvement and stabilization. Based on the findings of all relevant studies in the literature, a comprehensive cost-performance-balance analysis is conducted aiming to serve as a useful guideline for researchers and practitioners interested in applying fibers in various construction projects or other related applications where either MICP or EICP technique is being utilized as the main soil stabilization approach.