Evolution, topics and relevant research methodologies in business intelligence and data analysis in the academic management of higher education institutions. A literature review

IF 7.9 Q1 ENGINEERING, MULTIDISCIPLINARY Results in Engineering Pub Date : 2024-12-19 DOI:10.1016/j.rineng.2024.103782
M. Correa-Peralta, J. Vinueza-Martínez, L. Castillo-Heredia
{"title":"Evolution, topics and relevant research methodologies in business intelligence and data analysis in the academic management of higher education institutions. A literature review","authors":"M. Correa-Peralta,&nbsp;J. Vinueza-Martínez,&nbsp;L. Castillo-Heredia","doi":"10.1016/j.rineng.2024.103782","DOIUrl":null,"url":null,"abstract":"<div><div>In the digital era, Business Intelligence (BI) and data analytics have become essential for optimizing academic management in higher education institutions. This bibliometric study analyzed 755 Scopus-indexed publications (2019–2023) using RStudio, Biblioshiny, and Microsoft Excel to elucidate key themes, influential authors, and emerging research trends. Learning analytics, educational data mining, and BI applications such as dropout prediction systems, tailored distance education strategies, and machine learning models for institutional performance predominate in the field. High-impact journals, including the British Journal of Educational Technology and the Journal of Learning Analytics, play crucial roles with contributions from scholars such as Christothea Herodotou and Bart Rienties. Thematic analysis revealed ten clusters emphasizing predictive modeling, educational innovation, and online learning. Geographic trends highlight the predominance of research in the United States and Europe, underscoring the necessity for greater inclusivity in underrepresented regions such as Africa and South America. While quantitative methodologies prevail, this study emphasizes the significance of qualitative approaches to capture nuanced impacts and ethical considerations, including privacy, equity, and bias mitigation. Future research must adopt interdisciplinary methodologies to address systemic challenges, foster context-sensitive, equitable BI solutions that drive innovation, and enhance decision making across diverse educational environments.</div></div>","PeriodicalId":36919,"journal":{"name":"Results in Engineering","volume":"25 ","pages":"Article 103782"},"PeriodicalIF":7.9000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590123024020255","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In the digital era, Business Intelligence (BI) and data analytics have become essential for optimizing academic management in higher education institutions. This bibliometric study analyzed 755 Scopus-indexed publications (2019–2023) using RStudio, Biblioshiny, and Microsoft Excel to elucidate key themes, influential authors, and emerging research trends. Learning analytics, educational data mining, and BI applications such as dropout prediction systems, tailored distance education strategies, and machine learning models for institutional performance predominate in the field. High-impact journals, including the British Journal of Educational Technology and the Journal of Learning Analytics, play crucial roles with contributions from scholars such as Christothea Herodotou and Bart Rienties. Thematic analysis revealed ten clusters emphasizing predictive modeling, educational innovation, and online learning. Geographic trends highlight the predominance of research in the United States and Europe, underscoring the necessity for greater inclusivity in underrepresented regions such as Africa and South America. While quantitative methodologies prevail, this study emphasizes the significance of qualitative approaches to capture nuanced impacts and ethical considerations, including privacy, equity, and bias mitigation. Future research must adopt interdisciplinary methodologies to address systemic challenges, foster context-sensitive, equitable BI solutions that drive innovation, and enhance decision making across diverse educational environments.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高等教育机构学术管理中商业智能和数据分析的演变、主题和相关研究方法。文献综述
在数字时代,商业智能(BI)和数据分析对于优化高等教育机构的学术管理至关重要。本文献计量学研究使用RStudio、Biblioshiny和Microsoft Excel分析了755篇scopus索引的出版物(2019-2023),以阐明关键主题、有影响力的作者和新兴研究趋势。学习分析、教育数据挖掘和BI应用(如辍学预测系统、量身定制的远程教育策略和机构绩效机器学习模型)在该领域占主导地位。包括《英国教育技术杂志》和《学习分析杂志》在内的高影响力期刊在希罗多德(Christothea herodoou)和巴特·里恩蒂斯(Bart Rienties)等学者的贡献下发挥了至关重要的作用。专题分析揭示了10个强调预测建模、教育创新和在线学习的集群。地理趋势突出了美国和欧洲的研究占主导地位,强调了在非洲和南美洲等代表性不足的地区加强包容性的必要性。虽然定量方法占上风,但本研究强调定性方法的重要性,以捕捉细微的影响和伦理考虑,包括隐私、公平和偏见缓解。未来的研究必须采用跨学科的方法来解决系统性的挑战,培养上下文敏感的、公平的商业智能解决方案,以推动创新,并加强不同教育环境下的决策制定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Results in Engineering
Results in Engineering Engineering-Engineering (all)
CiteScore
5.80
自引率
34.00%
发文量
441
审稿时长
47 days
期刊最新文献
Hybrid CNN-Transformer models for industrial defect detection: A systematic review Recent advances in MPPT techniques for photovoltaic systems: A review of classical (P&O, IC), intelligent (ANN), optimization (PSO) and hybrid (ANN-PSO) methods Bio-binders in sustainable asphalt technologies: A comprehensive bibliometric analysis Review of thermal comfort, health risks, and environmental control strategies in small- and medium-scale indoor swimming venues Electrochemical remediation of polychlorinated biphenyls: Critical review of status, challenges and future prospects
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1