Innovative filler strategies for high-performance LSR in electrical and industrial applications: A review

IF 6 Q1 ENGINEERING, MULTIDISCIPLINARY Results in Engineering Pub Date : 2024-12-10 DOI:10.1016/j.rineng.2024.103722
Uppula Ramya, Pulla Sammaiah, Medabalimi Subbarao
{"title":"Innovative filler strategies for high-performance LSR in electrical and industrial applications: A review","authors":"Uppula Ramya,&nbsp;Pulla Sammaiah,&nbsp;Medabalimi Subbarao","doi":"10.1016/j.rineng.2024.103722","DOIUrl":null,"url":null,"abstract":"<div><div>This research presents a novel strategy for improving the electrical insulation properties of Liquid Silicone Rubber (LSR) through the strategic use of advanced fillers such as graphene nanoplates, Carbon black, Graphene oxide, alumina (Al₂O₃), epoxy resin, etc. In the study these materials are combined in a novel approach, leading to significant improvements in dielectric strength Increase to LSR/1 wt/Cordierite, tensile strength rising by nearly 98, reaching 10.3 MPa when using DBPMH filler. Alumina contributes to a notable increase in tear strength, achieving 25.3 N/mm with 10 wt% inclusion, while Shore A hardness dramatically improves, reaching 70 with vinyl ester and thermal stability, The addition of graphene nanoplates and nano SiO₂, even in low concentrations, significantly enhances the tensile modulus and elongation at break of LSR, challenging the belief that higher filler content is necessary. The SR/8wt% Carbon black composite exhibits a 700 % increase in elongation at break, reflecting greater flexibility, while alumina raises the tensile modulus to 1.3 MPa, enhancing stiffness. Recent findings indicate that Al₂O₃-filled liquid silicone rubber (LSR) composites maintain stable pH levels across various chemical environments. X-ray diffraction (XRD) analysis shows improved crystalline structures that enhance material stability, paving the way for high-performance materials in industrial and electronic applications.</div></div>","PeriodicalId":36919,"journal":{"name":"Results in Engineering","volume":"25 ","pages":"Article 103722"},"PeriodicalIF":6.0000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590123024019650","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This research presents a novel strategy for improving the electrical insulation properties of Liquid Silicone Rubber (LSR) through the strategic use of advanced fillers such as graphene nanoplates, Carbon black, Graphene oxide, alumina (Al₂O₃), epoxy resin, etc. In the study these materials are combined in a novel approach, leading to significant improvements in dielectric strength Increase to LSR/1 wt/Cordierite, tensile strength rising by nearly 98, reaching 10.3 MPa when using DBPMH filler. Alumina contributes to a notable increase in tear strength, achieving 25.3 N/mm with 10 wt% inclusion, while Shore A hardness dramatically improves, reaching 70 with vinyl ester and thermal stability, The addition of graphene nanoplates and nano SiO₂, even in low concentrations, significantly enhances the tensile modulus and elongation at break of LSR, challenging the belief that higher filler content is necessary. The SR/8wt% Carbon black composite exhibits a 700 % increase in elongation at break, reflecting greater flexibility, while alumina raises the tensile modulus to 1.3 MPa, enhancing stiffness. Recent findings indicate that Al₂O₃-filled liquid silicone rubber (LSR) composites maintain stable pH levels across various chemical environments. X-ray diffraction (XRD) analysis shows improved crystalline structures that enhance material stability, paving the way for high-performance materials in industrial and electronic applications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Results in Engineering
Results in Engineering Engineering-Engineering (all)
CiteScore
5.80
自引率
34.00%
发文量
441
审稿时长
47 days
期刊最新文献
Environmental occurrence, hazards, and remediation strategies for the removal of cadmium from the polluted environment Effect of fabrication techniques of high entropy alloys: A review with integration of machine learning An overview on the carbon deposited during dry reforming of methane (DRM): Its formation, deposition, identification, and quantification Recent developments in solar water heaters and solar collectors: A review on experimental and neural network analyses Influence of the typical twisted tape inserts into the inner tube of double-pipe heat exchanger: A limited review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1