Integrated pixel-level crack detection and quantification using an ensemble of advanced U-Net architectures

IF 6 Q1 ENGINEERING, MULTIDISCIPLINARY Results in Engineering Pub Date : 2024-12-11 DOI:10.1016/j.rineng.2024.103726
Rakshitha R , Srinath S , N Vinay Kumar , Rashmi S , Poornima B V
{"title":"Integrated pixel-level crack detection and quantification using an ensemble of advanced U-Net architectures","authors":"Rakshitha R ,&nbsp;Srinath S ,&nbsp;N Vinay Kumar ,&nbsp;Rashmi S ,&nbsp;Poornima B V","doi":"10.1016/j.rineng.2024.103726","DOIUrl":null,"url":null,"abstract":"<div><div>Automated pavement crack detection faces significant challenges due to the complex shapes of crack patterns, their similarity to non-crack textures, and varying environmental conditions such as lighting and noise. Traditional methods often struggle to adapt, leading to inconsistent and less accurate results in real-world scenarios. This study introduces a hybrid framework that combines convolutional and transformer-based architectures, leveraging their strengths to achieve reliable crack segmentation and pixel-level quantification. The framework incorporates state-of-the-art deep learning models, including U-Net, Attention U-Net, Residual Attention U-Net (RAUNet), TransUNet, and Swin-Unet. U-Net variants, enhanced with attention mechanisms and residual connections, improve feature extraction and gradient flow, enabling precise delineation of crack boundaries. Transformer-based models like TransUNet and Swin-Unet use self-attention mechanisms to capture both local and global spatial relationships, enhancing robustness across diverse crack patterns. A key contribution of this study is the evaluation of loss functions, including Binary Cross-Entropy (BCE) Loss, Dice Loss, and Binary Focal Loss. Binary Focal Loss proved particularly effective in addressing class imbalance across four benchmark datasets. To further improve segmentation performance, two ensemble strategies were applied: stochastic reordering using logical operations (AND, OR, and averaging) and a weighted average ensemble optimized through grid search. The weighted average ensemble demonstrated superior performance, achieving mean Intersection over Union (mIoU) scores of 0.73, 0.70, 0.78, and 0.86 on the CFD, AgileRN, Crack500, and DeepCrack datasets, respectively. In addition to segmentation, this study developed a method for accurately quantifying crack length and width. By using Euclidean distance along skeletal paths, the algorithm minimized error rates in length and width estimation. This framework provides a scalable and efficient solution for automated pavement crack analysis. It addresses critical challenges in accuracy, adaptability, and reliability under diverse operational conditions, marking significant progress in crack detection technology.</div></div>","PeriodicalId":36919,"journal":{"name":"Results in Engineering","volume":"25 ","pages":"Article 103726"},"PeriodicalIF":6.0000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590123024019698","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Automated pavement crack detection faces significant challenges due to the complex shapes of crack patterns, their similarity to non-crack textures, and varying environmental conditions such as lighting and noise. Traditional methods often struggle to adapt, leading to inconsistent and less accurate results in real-world scenarios. This study introduces a hybrid framework that combines convolutional and transformer-based architectures, leveraging their strengths to achieve reliable crack segmentation and pixel-level quantification. The framework incorporates state-of-the-art deep learning models, including U-Net, Attention U-Net, Residual Attention U-Net (RAUNet), TransUNet, and Swin-Unet. U-Net variants, enhanced with attention mechanisms and residual connections, improve feature extraction and gradient flow, enabling precise delineation of crack boundaries. Transformer-based models like TransUNet and Swin-Unet use self-attention mechanisms to capture both local and global spatial relationships, enhancing robustness across diverse crack patterns. A key contribution of this study is the evaluation of loss functions, including Binary Cross-Entropy (BCE) Loss, Dice Loss, and Binary Focal Loss. Binary Focal Loss proved particularly effective in addressing class imbalance across four benchmark datasets. To further improve segmentation performance, two ensemble strategies were applied: stochastic reordering using logical operations (AND, OR, and averaging) and a weighted average ensemble optimized through grid search. The weighted average ensemble demonstrated superior performance, achieving mean Intersection over Union (mIoU) scores of 0.73, 0.70, 0.78, and 0.86 on the CFD, AgileRN, Crack500, and DeepCrack datasets, respectively. In addition to segmentation, this study developed a method for accurately quantifying crack length and width. By using Euclidean distance along skeletal paths, the algorithm minimized error rates in length and width estimation. This framework provides a scalable and efficient solution for automated pavement crack analysis. It addresses critical challenges in accuracy, adaptability, and reliability under diverse operational conditions, marking significant progress in crack detection technology.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Results in Engineering
Results in Engineering Engineering-Engineering (all)
CiteScore
5.80
自引率
34.00%
发文量
441
审稿时长
47 days
期刊最新文献
Environmental occurrence, hazards, and remediation strategies for the removal of cadmium from the polluted environment Effect of fabrication techniques of high entropy alloys: A review with integration of machine learning An overview on the carbon deposited during dry reforming of methane (DRM): Its formation, deposition, identification, and quantification Recent developments in solar water heaters and solar collectors: A review on experimental and neural network analyses Influence of the typical twisted tape inserts into the inner tube of double-pipe heat exchanger: A limited review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1