S.I. Petrushenko , K. Adach , M. Fijalkowski , V.R. Kopach , Y.M. Shepotko , S.V. Dukarov , R.V. Sukhov , A. Fedonenko , A.L. Khrypunova , N.P. Klochko
{"title":"Zinc oxide nanorods and nanotubes arrays grown on carbon fabric by microwave hydrothermal method for self-powered piezoelectric/triboelectric sensors","authors":"S.I. Petrushenko , K. Adach , M. Fijalkowski , V.R. Kopach , Y.M. Shepotko , S.V. Dukarov , R.V. Sukhov , A. Fedonenko , A.L. Khrypunova , N.P. Klochko","doi":"10.1016/j.tsf.2025.140601","DOIUrl":null,"url":null,"abstract":"<div><div>The development of efficient piezoelectric/triboelectric textile materials for highly sensitive wearable autonomous pressure, shock and vibration sensors holds promise for use in health monitoring, motion detection, human-machine interaction, and active touch matrices for electronic skin of soft robots. In this work, arrays of zinc oxide nanorods (ZnONR) and nanotubes (ZnONT) oriented vertically on the surface of carbon fabric (CF) were grown from aqueous solutions with concentrations of zinc nitrate and hexamethylenetetramine (HMTA) in the range of 50–100 mM using a seed-mediated microwave hydrothermal method. The results of tests of experimental samples of pressure and impact sensors based on various compositions of double-electrode and single-electrode piezoelectric/triboelectric nanogenerators (PTENGs) of contact-separation mode with textile parts of CF/ZnONR and CF/ZnONT confirmed the coupling of piezoelectric and triboelectric effects. The tests have shown that the efficiency of all developed PTENGs increases with increasing contact area of nanostructured zinc oxide arrays, and therefore ZnO nanorods have proven to be more promising for use in all types of PTENGs. The best responses were recorded for pressure, impact and vibration sensors based on PTENG with a piezoelectric/triboelectric textile part CF/ZnONR obtained by the microwave hydrothermal method in the solution of 100 mM Zn(NO<sub>3</sub>)<sub>2</sub> and 100 mM HMTA. Comparison of their sensitivity with the sensitivity data of wearable triboelectric pressure and strain sensors, as well as hybrid piezotriboelectric and triboelectric flexible vibration sensors, showed that the sensitivity data obtained in this work is on the same level or superior to the best state-of-the-art.</div></div>","PeriodicalId":23182,"journal":{"name":"Thin Solid Films","volume":"810 ","pages":"Article 140601"},"PeriodicalIF":2.0000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Thin Solid Films","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0040609025000021","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, COATINGS & FILMS","Score":null,"Total":0}
引用次数: 0
Abstract
The development of efficient piezoelectric/triboelectric textile materials for highly sensitive wearable autonomous pressure, shock and vibration sensors holds promise for use in health monitoring, motion detection, human-machine interaction, and active touch matrices for electronic skin of soft robots. In this work, arrays of zinc oxide nanorods (ZnONR) and nanotubes (ZnONT) oriented vertically on the surface of carbon fabric (CF) were grown from aqueous solutions with concentrations of zinc nitrate and hexamethylenetetramine (HMTA) in the range of 50–100 mM using a seed-mediated microwave hydrothermal method. The results of tests of experimental samples of pressure and impact sensors based on various compositions of double-electrode and single-electrode piezoelectric/triboelectric nanogenerators (PTENGs) of contact-separation mode with textile parts of CF/ZnONR and CF/ZnONT confirmed the coupling of piezoelectric and triboelectric effects. The tests have shown that the efficiency of all developed PTENGs increases with increasing contact area of nanostructured zinc oxide arrays, and therefore ZnO nanorods have proven to be more promising for use in all types of PTENGs. The best responses were recorded for pressure, impact and vibration sensors based on PTENG with a piezoelectric/triboelectric textile part CF/ZnONR obtained by the microwave hydrothermal method in the solution of 100 mM Zn(NO3)2 and 100 mM HMTA. Comparison of their sensitivity with the sensitivity data of wearable triboelectric pressure and strain sensors, as well as hybrid piezotriboelectric and triboelectric flexible vibration sensors, showed that the sensitivity data obtained in this work is on the same level or superior to the best state-of-the-art.
高效压电/摩擦电纺织材料的高灵敏度可穿戴自主压力、冲击和振动传感器的开发有望用于健康监测、运动检测、人机交互和软机器人电子皮肤的主动触摸矩阵。在这项工作中,利用种子介导的微波水热法,在硝酸锌和六亚甲基四胺(HMTA)浓度为50-100 mM的水溶液中,在碳织物(CF)表面垂直生长出氧化锌纳米棒(ZnONR)和纳米管(ZnONT)阵列。利用CF/ZnONR和CF/ZnONT的纺织部件,对不同组成的双电极和单电极压电/摩擦电纳米发电机(PTENGs)的接触分离模式压力传感器和冲击传感器的实验样品进行了测试,证实了压电和摩擦电效应的耦合。实验表明,随着纳米结构氧化锌阵列接触面积的增加,所有开发的pteng的效率都有所提高,因此ZnO纳米棒已被证明更有希望用于所有类型的pteng。在100 mM Zn(NO3)2和100 mM HMTA溶液中,利用微波水热法制备的CF/ZnONR压电/摩擦电织物部件,制备了基于PTENG的压力、冲击和振动传感器,获得了最佳响应。将其灵敏度与可穿戴式摩擦电压力和应变传感器以及混合压电摩擦电和摩擦电柔性振动传感器的灵敏度数据进行比较,结果表明,本工作获得的灵敏度数据与目前最先进的灵敏度数据处于同一水平或更高的水平。
期刊介绍:
Thin Solid Films is an international journal which serves scientists and engineers working in the fields of thin-film synthesis, characterization, and applications. The field of thin films, which can be defined as the confluence of materials science, surface science, and applied physics, has become an identifiable unified discipline of scientific endeavor.