From inactive biomass in removing amoxicillin to new active chitosan-biomass composite adsorbents

IF 6 Q1 ENGINEERING, MULTIDISCIPLINARY Results in Engineering Pub Date : 2024-12-10 DOI:10.1016/j.rineng.2024.103709
Zuhier Alakayleh
{"title":"From inactive biomass in removing amoxicillin to new active chitosan-biomass composite adsorbents","authors":"Zuhier Alakayleh","doi":"10.1016/j.rineng.2024.103709","DOIUrl":null,"url":null,"abstract":"<div><div>The increasing issue of water pollution by pharmaceuticals, such as amoxicillin, emphasizes the need for sustainable and environmentally friendly solutions that can overcome the shortcomings of traditional methods. This study concentrates on synthesizing and evaluating new chitosan-olive leaf biomass composites (COLCs) for amoxicillin (AMX) removal from water. A combination of olive leaf biomass (OL biomass), derived from a widely available agricultural waste, with different amounts of chitosan, an aquacultural by-product, led to the development of three unique composite adsorbents; 2COLC, 4COLC, and 6COLC. The SEM, BET, EDS, zeta potential, and FTIR analyses were employed to characterize the newly synthesized adsorbents. The COLCs presented a higher surface area than the OL biomass rising from 10.032 m<sup>2</sup>/g for the biomass to 14.404 m<sup>2</sup>/g for 2COLC, 31.279 m<sup>2</sup>/g for 4COLC, and 43.294 m<sup>2</sup>/g for 6COLC, which increased due to the higher chitosan incorporation improving the porosity. The adsorption capabilities of the OL biomass and COLCs for AMX were examined. The OL biomass showed negligible adsorption efficiency while COLCs exhibited enhanced adsorption capacity, which increased with increasing chitosan content. The adsorption capacities, as indicated by the Freundlich constant increased with chitosan content, ranging from 0.011 to 0.04 (mg/g)(L/mg)<em><sup>n</sup></em> for 2COLC and 6COLC, respectively. Thermodynamic studies indicated that the adsorption process for COLCs was spontaneous, endothermic, and thermodynamically favorable. Based on these findings, it can be concluded that the COLCs have the potential as efficient eco-friendly, and sustainable adsorbents for removing pharmaceutical pollutants from water sources such as AMX.</div></div>","PeriodicalId":36919,"journal":{"name":"Results in Engineering","volume":"25 ","pages":"Article 103709"},"PeriodicalIF":6.0000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590123024019522","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The increasing issue of water pollution by pharmaceuticals, such as amoxicillin, emphasizes the need for sustainable and environmentally friendly solutions that can overcome the shortcomings of traditional methods. This study concentrates on synthesizing and evaluating new chitosan-olive leaf biomass composites (COLCs) for amoxicillin (AMX) removal from water. A combination of olive leaf biomass (OL biomass), derived from a widely available agricultural waste, with different amounts of chitosan, an aquacultural by-product, led to the development of three unique composite adsorbents; 2COLC, 4COLC, and 6COLC. The SEM, BET, EDS, zeta potential, and FTIR analyses were employed to characterize the newly synthesized adsorbents. The COLCs presented a higher surface area than the OL biomass rising from 10.032 m2/g for the biomass to 14.404 m2/g for 2COLC, 31.279 m2/g for 4COLC, and 43.294 m2/g for 6COLC, which increased due to the higher chitosan incorporation improving the porosity. The adsorption capabilities of the OL biomass and COLCs for AMX were examined. The OL biomass showed negligible adsorption efficiency while COLCs exhibited enhanced adsorption capacity, which increased with increasing chitosan content. The adsorption capacities, as indicated by the Freundlich constant increased with chitosan content, ranging from 0.011 to 0.04 (mg/g)(L/mg)n for 2COLC and 6COLC, respectively. Thermodynamic studies indicated that the adsorption process for COLCs was spontaneous, endothermic, and thermodynamically favorable. Based on these findings, it can be concluded that the COLCs have the potential as efficient eco-friendly, and sustainable adsorbents for removing pharmaceutical pollutants from water sources such as AMX.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Results in Engineering
Results in Engineering Engineering-Engineering (all)
CiteScore
5.80
自引率
34.00%
发文量
441
审稿时长
47 days
期刊最新文献
Environmental occurrence, hazards, and remediation strategies for the removal of cadmium from the polluted environment Effect of fabrication techniques of high entropy alloys: A review with integration of machine learning An overview on the carbon deposited during dry reforming of methane (DRM): Its formation, deposition, identification, and quantification Recent developments in solar water heaters and solar collectors: A review on experimental and neural network analyses Influence of the typical twisted tape inserts into the inner tube of double-pipe heat exchanger: A limited review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1