Mohammad-Hadi Safari-Naderi , Ahmad Ghasemi-Ghalebahman , Meisam Shakouri
{"title":"Investigating strain rate effects on elastoplastic fracture using a variable material properties-based peridynamic model","authors":"Mohammad-Hadi Safari-Naderi , Ahmad Ghasemi-Ghalebahman , Meisam Shakouri","doi":"10.1016/j.rineng.2024.103739","DOIUrl":null,"url":null,"abstract":"<div><div>This study addresses a significant limitation in bond-based peridynamic (BB-PD) models, which have traditionally struggled to predict failure in ductile materials. The research introduces a novel approach to enhance the capabilities of BB-PD by incorporating the Variable Material Property (VMP) method, enabling accurate modeling of elastoplastic behavior. By integrating the Johnson–Cook material model, which accounts for strain rate dependency, the proposed Variable Material Properties-Based Peridynamic (VMPB-PD) method effectively characterizes elastoplastic deformations. Numerical results, validated against experimental data from the literature, demonstrate the accuracy of the model, with a maximum prediction error of 8 %. This new method shows strong agreement with experimental findings, providing a significant improvement in simulating fracture behavior under varying loading rates.</div></div>","PeriodicalId":36919,"journal":{"name":"Results in Engineering","volume":"25 ","pages":"Article 103739"},"PeriodicalIF":6.0000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590123024019820","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This study addresses a significant limitation in bond-based peridynamic (BB-PD) models, which have traditionally struggled to predict failure in ductile materials. The research introduces a novel approach to enhance the capabilities of BB-PD by incorporating the Variable Material Property (VMP) method, enabling accurate modeling of elastoplastic behavior. By integrating the Johnson–Cook material model, which accounts for strain rate dependency, the proposed Variable Material Properties-Based Peridynamic (VMPB-PD) method effectively characterizes elastoplastic deformations. Numerical results, validated against experimental data from the literature, demonstrate the accuracy of the model, with a maximum prediction error of 8 %. This new method shows strong agreement with experimental findings, providing a significant improvement in simulating fracture behavior under varying loading rates.