Investigating strain rate effects on elastoplastic fracture using a variable material properties-based peridynamic model

IF 6 Q1 ENGINEERING, MULTIDISCIPLINARY Results in Engineering Pub Date : 2024-12-12 DOI:10.1016/j.rineng.2024.103739
Mohammad-Hadi Safari-Naderi , Ahmad Ghasemi-Ghalebahman , Meisam Shakouri
{"title":"Investigating strain rate effects on elastoplastic fracture using a variable material properties-based peridynamic model","authors":"Mohammad-Hadi Safari-Naderi ,&nbsp;Ahmad Ghasemi-Ghalebahman ,&nbsp;Meisam Shakouri","doi":"10.1016/j.rineng.2024.103739","DOIUrl":null,"url":null,"abstract":"<div><div>This study addresses a significant limitation in bond-based peridynamic (BB-PD) models, which have traditionally struggled to predict failure in ductile materials. The research introduces a novel approach to enhance the capabilities of BB-PD by incorporating the Variable Material Property (VMP) method, enabling accurate modeling of elastoplastic behavior. By integrating the Johnson–Cook material model, which accounts for strain rate dependency, the proposed Variable Material Properties-Based Peridynamic (VMPB-PD) method effectively characterizes elastoplastic deformations. Numerical results, validated against experimental data from the literature, demonstrate the accuracy of the model, with a maximum prediction error of 8 %. This new method shows strong agreement with experimental findings, providing a significant improvement in simulating fracture behavior under varying loading rates.</div></div>","PeriodicalId":36919,"journal":{"name":"Results in Engineering","volume":"25 ","pages":"Article 103739"},"PeriodicalIF":6.0000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590123024019820","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This study addresses a significant limitation in bond-based peridynamic (BB-PD) models, which have traditionally struggled to predict failure in ductile materials. The research introduces a novel approach to enhance the capabilities of BB-PD by incorporating the Variable Material Property (VMP) method, enabling accurate modeling of elastoplastic behavior. By integrating the Johnson–Cook material model, which accounts for strain rate dependency, the proposed Variable Material Properties-Based Peridynamic (VMPB-PD) method effectively characterizes elastoplastic deformations. Numerical results, validated against experimental data from the literature, demonstrate the accuracy of the model, with a maximum prediction error of 8 %. This new method shows strong agreement with experimental findings, providing a significant improvement in simulating fracture behavior under varying loading rates.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Results in Engineering
Results in Engineering Engineering-Engineering (all)
CiteScore
5.80
自引率
34.00%
发文量
441
审稿时长
47 days
期刊最新文献
Environmental occurrence, hazards, and remediation strategies for the removal of cadmium from the polluted environment Effect of fabrication techniques of high entropy alloys: A review with integration of machine learning An overview on the carbon deposited during dry reforming of methane (DRM): Its formation, deposition, identification, and quantification Recent developments in solar water heaters and solar collectors: A review on experimental and neural network analyses Influence of the typical twisted tape inserts into the inner tube of double-pipe heat exchanger: A limited review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1