Hot or not? Modulating the functionality of artificial casein micelles with the preparation temperature

IF 7.2 Q1 FOOD SCIENCE & TECHNOLOGY Future Foods Pub Date : 2025-01-13 DOI:10.1016/j.fufo.2025.100543
Laurens J. Antuma , Yuxuan Si , Vasil M. Garamus , Jan Skov Pedersen , Volker Gräf , Elke Walz , Remko M. Boom , Julia K. Keppler
{"title":"Hot or not? Modulating the functionality of artificial casein micelles with the preparation temperature","authors":"Laurens J. Antuma ,&nbsp;Yuxuan Si ,&nbsp;Vasil M. Garamus ,&nbsp;Jan Skov Pedersen ,&nbsp;Volker Gräf ,&nbsp;Elke Walz ,&nbsp;Remko M. Boom ,&nbsp;Julia K. Keppler","doi":"10.1016/j.fufo.2025.100543","DOIUrl":null,"url":null,"abstract":"<div><div>Identifying optimal conditions for the efficient future production of artificial casein micelles (ACM) with precision fermentation-derived caseins is essential for their application in future foods. However, casein micelles naturally form under physiological conditions with little variation, rendering it difficult to study how temperature and other factors affect their assembly. This study evaluated whether the temperature during the artificial assembly of caseins into casein micelles has a lasting impact on ACM properties and functionality. ACM were prepared at temperatures between 5 and 65 °C and stored and analysed at a fixed temperature. Micelle formation was most efficient at 37 °C, yielding the highest level of micellar casein. Casein aggregation occurred at both lower and higher temperatures, with the fraction of serum casein increasing at higher temperatures, leading to reduced micellar casein levels. Additionally, the fraction of micellar calcium phosphate and magnesium, as well as the size of calcium phosphate nanoclusters, increased with higher preparation temperatures, while micellar size and hydration decreased, resulting in denser structures. These structural and compositional changes impacted functionality, with ACM prepared at intermediate temperatures (25 and 37 °C) producing the firmest curds upon rennet coagulation, while foam stability improved for ACM prepared at lower and especially higher (65 °C) temperatures. The preparation temperature thus had irreversible effects on the ACM properties, offering a means to tailor ACM to specific applications in future foods.</div></div>","PeriodicalId":34474,"journal":{"name":"Future Foods","volume":"11 ","pages":"Article 100543"},"PeriodicalIF":7.2000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future Foods","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666833525000061","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Identifying optimal conditions for the efficient future production of artificial casein micelles (ACM) with precision fermentation-derived caseins is essential for their application in future foods. However, casein micelles naturally form under physiological conditions with little variation, rendering it difficult to study how temperature and other factors affect their assembly. This study evaluated whether the temperature during the artificial assembly of caseins into casein micelles has a lasting impact on ACM properties and functionality. ACM were prepared at temperatures between 5 and 65 °C and stored and analysed at a fixed temperature. Micelle formation was most efficient at 37 °C, yielding the highest level of micellar casein. Casein aggregation occurred at both lower and higher temperatures, with the fraction of serum casein increasing at higher temperatures, leading to reduced micellar casein levels. Additionally, the fraction of micellar calcium phosphate and magnesium, as well as the size of calcium phosphate nanoclusters, increased with higher preparation temperatures, while micellar size and hydration decreased, resulting in denser structures. These structural and compositional changes impacted functionality, with ACM prepared at intermediate temperatures (25 and 37 °C) producing the firmest curds upon rennet coagulation, while foam stability improved for ACM prepared at lower and especially higher (65 °C) temperatures. The preparation temperature thus had irreversible effects on the ACM properties, offering a means to tailor ACM to specific applications in future foods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Future Foods
Future Foods Agricultural and Biological Sciences-Food Science
CiteScore
8.60
自引率
0.00%
发文量
97
审稿时长
15 weeks
期刊介绍: Future Foods is a specialized journal that is dedicated to tackling the challenges posed by climate change and the need for sustainability in the realm of food production. The journal recognizes the imperative to transform current food manufacturing and consumption practices to meet the dietary needs of a burgeoning global population while simultaneously curbing environmental degradation. The mission of Future Foods is to disseminate research that aligns with the goal of fostering the development of innovative technologies and alternative food sources to establish more sustainable food systems. The journal is committed to publishing high-quality, peer-reviewed articles that contribute to the advancement of sustainable food practices. Abstracting and indexing: Scopus Directory of Open Access Journals (DOAJ) Emerging Sources Citation Index (ESCI) SCImago Journal Rank (SJR) SNIP
期刊最新文献
Bacterial nanocellulose and its oxidized form as functional carriers for pomegranate peel extract: A sustainable approach to bioactive delivery Increasing food sustainability by utilization of biowaste to grow mealworms and their nutrient profile as human food Microalgal proteins as ingredients for creating dairy mimetic products: Prospects for substituting bovine milk proteins Physical and functional characterization of whey protein-lignin biocomposite films for food packaging applications The forgotten factor: Exploring consumer perceptions of artificial intelligence in the food and agriculture systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1