Sebastián Espinel-Ríos , José Montaño López , José L. Avalos
{"title":"Omics-driven hybrid dynamic modeling of bioprocesses with uncertainty estimation","authors":"Sebastián Espinel-Ríos , José Montaño López , José L. Avalos","doi":"10.1016/j.bej.2025.109637","DOIUrl":null,"url":null,"abstract":"<div><div>This work presents an omics-driven modeling pipeline that integrates machine-learning tools to facilitate the dynamic modeling of multiscale biological systems. Random forests and permutation feature importance are proposed to mine omics datasets, guiding feature selection and dimensionality reduction for dynamic modeling. Continuous and differentiable machine-learning functions can be trained to link the reduced omics feature set to key components of the dynamic model, resulting in a hybrid model. As proof of concept, we apply this framework to a high-dimensional proteomics dataset of <em>Saccharomyces cerevisiae</em>. After identifying key intracellular proteins that correlate with cell growth, targeted dynamic experiments are designed, and key model parameters are captured as functions of the selected proteins using Gaussian processes. This approach captures the dynamic behavior of yeast strains under varying proteome profiles while estimating the uncertainty in the hybrid model’s predictions. The outlined modeling framework is adaptable to other scenarios, such as integrating additional layers of omics data for more advanced multiscale biological systems, or employing alternative machine-learning methods to handle larger datasets. Overall, this study outlines a strategy for leveraging omics data to inform multiscale dynamic modeling in systems biology and bioprocess engineering.</div></div>","PeriodicalId":8766,"journal":{"name":"Biochemical Engineering Journal","volume":"216 ","pages":"Article 109637"},"PeriodicalIF":3.7000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical Engineering Journal","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1369703X25000105","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This work presents an omics-driven modeling pipeline that integrates machine-learning tools to facilitate the dynamic modeling of multiscale biological systems. Random forests and permutation feature importance are proposed to mine omics datasets, guiding feature selection and dimensionality reduction for dynamic modeling. Continuous and differentiable machine-learning functions can be trained to link the reduced omics feature set to key components of the dynamic model, resulting in a hybrid model. As proof of concept, we apply this framework to a high-dimensional proteomics dataset of Saccharomyces cerevisiae. After identifying key intracellular proteins that correlate with cell growth, targeted dynamic experiments are designed, and key model parameters are captured as functions of the selected proteins using Gaussian processes. This approach captures the dynamic behavior of yeast strains under varying proteome profiles while estimating the uncertainty in the hybrid model’s predictions. The outlined modeling framework is adaptable to other scenarios, such as integrating additional layers of omics data for more advanced multiscale biological systems, or employing alternative machine-learning methods to handle larger datasets. Overall, this study outlines a strategy for leveraging omics data to inform multiscale dynamic modeling in systems biology and bioprocess engineering.
期刊介绍:
The Biochemical Engineering Journal aims to promote progress in the crucial chemical engineering aspects of the development of biological processes associated with everything from raw materials preparation to product recovery relevant to industries as diverse as medical/healthcare, industrial biotechnology, and environmental biotechnology.
The Journal welcomes full length original research papers, short communications, and review papers* in the following research fields:
Biocatalysis (enzyme or microbial) and biotransformations, including immobilized biocatalyst preparation and kinetics
Biosensors and Biodevices including biofabrication and novel fuel cell development
Bioseparations including scale-up and protein refolding/renaturation
Environmental Bioengineering including bioconversion, bioremediation, and microbial fuel cells
Bioreactor Systems including characterization, optimization and scale-up
Bioresources and Biorefinery Engineering including biomass conversion, biofuels, bioenergy, and optimization
Industrial Biotechnology including specialty chemicals, platform chemicals and neutraceuticals
Biomaterials and Tissue Engineering including bioartificial organs, cell encapsulation, and controlled release
Cell Culture Engineering (plant, animal or insect cells) including viral vectors, monoclonal antibodies, recombinant proteins, vaccines, and secondary metabolites
Cell Therapies and Stem Cells including pluripotent, mesenchymal and hematopoietic stem cells; immunotherapies; tissue-specific differentiation; and cryopreservation
Metabolic Engineering, Systems and Synthetic Biology including OMICS, bioinformatics, in silico biology, and metabolic flux analysis
Protein Engineering including enzyme engineering and directed evolution.