Tailoring the mechanical and corrosion properties of direct metal deposited 316L stainless steel by underwater ultrasonic impact treatment

IF 6.1 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Materials Science and Engineering: A Pub Date : 2025-02-01 DOI:10.1016/j.msea.2025.147844
Zhandong Wang , Mingzhi Chen , Zhiyuan Jia , Rui Li , Zhonggang Sun , Guifang Sun
{"title":"Tailoring the mechanical and corrosion properties of direct metal deposited 316L stainless steel by underwater ultrasonic impact treatment","authors":"Zhandong Wang ,&nbsp;Mingzhi Chen ,&nbsp;Zhiyuan Jia ,&nbsp;Rui Li ,&nbsp;Zhonggang Sun ,&nbsp;Guifang Sun","doi":"10.1016/j.msea.2025.147844","DOIUrl":null,"url":null,"abstract":"<div><div>Direct metal deposition (DMD) holds significant promise for repairing damaged components located in underwater environments. However, the uncontrolled microstructure, tensile residual stress and defects formed by DMD significantly restrict its application. In this study, underwater ultrasonic impact treatment (UUIT) is employed to improve the surface quality, mechanical properties and corrosion resistance of the DMD 316L stainless steel. The results demonstrate that while UUIT is capable of closing the defects that are fully distributed within the surface plastic flow region (∼75 μm), it is unable to affect those that are distributed beyond this region. The high-frequency impact of the needle on the surface is the primary factor contributing to the formation of a severely deformed layer. Conversely, the role of the bubble collapse near the needle tip is minor. The micron-sized cellular structures (∼5.4 μm) on the top surface are refined into nano-sized grains (∼195 nm) by UUIT. Moreover, UUIT transforms tensile residual stresses into compressive residual stresses (61–99 MPa). UUIT increases the microhardness of the surface region by 35 %. Additionally, the tensile strength of the DMD 316L is significantly improved by UUIT, which is due to the combined effects of grain refinement and elevated dislocation density. However, the work-hardened surface layer restricts the movement of dislocations, thereby markedly reducing ductility. Furthermore, the DMD-UUIT 316L exhibits an enhanced corrosion resistance compared to the DMD 316L. Nevertheless, the beneficial effects of grain refinement and microstructure homogeneity are partially offset by the presence of dislocations and α′ martensite.</div></div>","PeriodicalId":385,"journal":{"name":"Materials Science and Engineering: A","volume":"924 ","pages":"Article 147844"},"PeriodicalIF":6.1000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science and Engineering: A","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921509325000620","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Direct metal deposition (DMD) holds significant promise for repairing damaged components located in underwater environments. However, the uncontrolled microstructure, tensile residual stress and defects formed by DMD significantly restrict its application. In this study, underwater ultrasonic impact treatment (UUIT) is employed to improve the surface quality, mechanical properties and corrosion resistance of the DMD 316L stainless steel. The results demonstrate that while UUIT is capable of closing the defects that are fully distributed within the surface plastic flow region (∼75 μm), it is unable to affect those that are distributed beyond this region. The high-frequency impact of the needle on the surface is the primary factor contributing to the formation of a severely deformed layer. Conversely, the role of the bubble collapse near the needle tip is minor. The micron-sized cellular structures (∼5.4 μm) on the top surface are refined into nano-sized grains (∼195 nm) by UUIT. Moreover, UUIT transforms tensile residual stresses into compressive residual stresses (61–99 MPa). UUIT increases the microhardness of the surface region by 35 %. Additionally, the tensile strength of the DMD 316L is significantly improved by UUIT, which is due to the combined effects of grain refinement and elevated dislocation density. However, the work-hardened surface layer restricts the movement of dislocations, thereby markedly reducing ductility. Furthermore, the DMD-UUIT 316L exhibits an enhanced corrosion resistance compared to the DMD 316L. Nevertheless, the beneficial effects of grain refinement and microstructure homogeneity are partially offset by the presence of dislocations and α′ martensite.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Materials Science and Engineering: A
Materials Science and Engineering: A 工程技术-材料科学:综合
CiteScore
11.50
自引率
15.60%
发文量
1811
审稿时长
31 days
期刊介绍: Materials Science and Engineering A provides an international medium for the publication of theoretical and experimental studies related to the load-bearing capacity of materials as influenced by their basic properties, processing history, microstructure and operating environment. Appropriate submissions to Materials Science and Engineering A should include scientific and/or engineering factors which affect the microstructure - strength relationships of materials and report the changes to mechanical behavior.
期刊最新文献
Effect of annealing temperature on microstructure, work hardening and softening behavior of cold-rolled Mg-8Li-3Al-0.3Si alloy Unveiling microstructural heterogeneity and strain redistribution mechanisms in hybrid-manufactured Ti6Al4V Friction surface layer deposition of triple-phase Al10Cr12Fe35Mn23Ni20 high entropy alloy: Process optimization and microstructural evolution Intermediate annealing of severely deformed pure titanium by multi-directional forging: Effect on mechanical properties and microstructure Effect of rolling reduction on the texture evolution and mechanical properties hot-rolled WMoTaV refractory high entropy alloy with interfacial segregation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1