Zhandong Wang , Mingzhi Chen , Zhiyuan Jia , Rui Li , Zhonggang Sun , Guifang Sun
{"title":"Tailoring the mechanical and corrosion properties of direct metal deposited 316L stainless steel by underwater ultrasonic impact treatment","authors":"Zhandong Wang , Mingzhi Chen , Zhiyuan Jia , Rui Li , Zhonggang Sun , Guifang Sun","doi":"10.1016/j.msea.2025.147844","DOIUrl":null,"url":null,"abstract":"<div><div>Direct metal deposition (DMD) holds significant promise for repairing damaged components located in underwater environments. However, the uncontrolled microstructure, tensile residual stress and defects formed by DMD significantly restrict its application. In this study, underwater ultrasonic impact treatment (UUIT) is employed to improve the surface quality, mechanical properties and corrosion resistance of the DMD 316L stainless steel. The results demonstrate that while UUIT is capable of closing the defects that are fully distributed within the surface plastic flow region (∼75 μm), it is unable to affect those that are distributed beyond this region. The high-frequency impact of the needle on the surface is the primary factor contributing to the formation of a severely deformed layer. Conversely, the role of the bubble collapse near the needle tip is minor. The micron-sized cellular structures (∼5.4 μm) on the top surface are refined into nano-sized grains (∼195 nm) by UUIT. Moreover, UUIT transforms tensile residual stresses into compressive residual stresses (61–99 MPa). UUIT increases the microhardness of the surface region by 35 %. Additionally, the tensile strength of the DMD 316L is significantly improved by UUIT, which is due to the combined effects of grain refinement and elevated dislocation density. However, the work-hardened surface layer restricts the movement of dislocations, thereby markedly reducing ductility. Furthermore, the DMD-UUIT 316L exhibits an enhanced corrosion resistance compared to the DMD 316L. Nevertheless, the beneficial effects of grain refinement and microstructure homogeneity are partially offset by the presence of dislocations and α′ martensite.</div></div>","PeriodicalId":385,"journal":{"name":"Materials Science and Engineering: A","volume":"924 ","pages":"Article 147844"},"PeriodicalIF":6.1000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science and Engineering: A","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921509325000620","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Direct metal deposition (DMD) holds significant promise for repairing damaged components located in underwater environments. However, the uncontrolled microstructure, tensile residual stress and defects formed by DMD significantly restrict its application. In this study, underwater ultrasonic impact treatment (UUIT) is employed to improve the surface quality, mechanical properties and corrosion resistance of the DMD 316L stainless steel. The results demonstrate that while UUIT is capable of closing the defects that are fully distributed within the surface plastic flow region (∼75 μm), it is unable to affect those that are distributed beyond this region. The high-frequency impact of the needle on the surface is the primary factor contributing to the formation of a severely deformed layer. Conversely, the role of the bubble collapse near the needle tip is minor. The micron-sized cellular structures (∼5.4 μm) on the top surface are refined into nano-sized grains (∼195 nm) by UUIT. Moreover, UUIT transforms tensile residual stresses into compressive residual stresses (61–99 MPa). UUIT increases the microhardness of the surface region by 35 %. Additionally, the tensile strength of the DMD 316L is significantly improved by UUIT, which is due to the combined effects of grain refinement and elevated dislocation density. However, the work-hardened surface layer restricts the movement of dislocations, thereby markedly reducing ductility. Furthermore, the DMD-UUIT 316L exhibits an enhanced corrosion resistance compared to the DMD 316L. Nevertheless, the beneficial effects of grain refinement and microstructure homogeneity are partially offset by the presence of dislocations and α′ martensite.
期刊介绍:
Materials Science and Engineering A provides an international medium for the publication of theoretical and experimental studies related to the load-bearing capacity of materials as influenced by their basic properties, processing history, microstructure and operating environment. Appropriate submissions to Materials Science and Engineering A should include scientific and/or engineering factors which affect the microstructure - strength relationships of materials and report the changes to mechanical behavior.