Enhancing the accuracy and generality of the Debye–Grüneisen Model: Optimizing the volume dependence for accurate predictions across varied compositions
Yi Wang , Xingru Tan , Saro San , Shanshan Hu , Michael C. Gao
{"title":"Enhancing the accuracy and generality of the Debye–Grüneisen Model: Optimizing the volume dependence for accurate predictions across varied compositions","authors":"Yi Wang , Xingru Tan , Saro San , Shanshan Hu , Michael C. Gao","doi":"10.1016/j.mtla.2024.102299","DOIUrl":null,"url":null,"abstract":"<div><div>In this work, we have introduced an optimized Debye-Grüneisen model that revolutionizes the determination of the Debye temperature and Grüneisen parameters. Unlike conventional methods, our model requires only the 0 K energy volume data for a material as input, eliminating the need to determine the bulk modulus and its pressure derivative, which often pose challenges due to numerical uncertainties. This unique feature sets our model apart from existing approaches and streamlines the process, enabling accurate predictions of thermal expansion behavior across various materials. To demonstrate its effectiveness, we showcase its excellent agreement with measured coefficients of thermal expansion (CTE) for the nickel-cobalt-chromium-aluminum-yttrium (Ni-Co-Cr-Al-Y) bond-coating system. Additionally, we apply our approach by conducting a high-throughput search for potential bond-coating materials among 90,000 compositions within the aluminum-cobalt-chromium-iron-nickel (Al-Co-Cr-Fe-Ni) system. From this extensive search, four compositions are synthesized, and the measured CTE values agree very well with theoretical predictions, hence validating our approach. The current optimized Debye-Grüneisen model combined with Density Functional Theory (DFT)-based thermodynamic database enables reliable and efficient high-throughput calculations of CTE of of a material without expensive phonon calculations.</div></div>","PeriodicalId":47623,"journal":{"name":"Materialia","volume":"38 ","pages":"Article 102299"},"PeriodicalIF":3.0000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materialia","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589152924002965","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In this work, we have introduced an optimized Debye-Grüneisen model that revolutionizes the determination of the Debye temperature and Grüneisen parameters. Unlike conventional methods, our model requires only the 0 K energy volume data for a material as input, eliminating the need to determine the bulk modulus and its pressure derivative, which often pose challenges due to numerical uncertainties. This unique feature sets our model apart from existing approaches and streamlines the process, enabling accurate predictions of thermal expansion behavior across various materials. To demonstrate its effectiveness, we showcase its excellent agreement with measured coefficients of thermal expansion (CTE) for the nickel-cobalt-chromium-aluminum-yttrium (Ni-Co-Cr-Al-Y) bond-coating system. Additionally, we apply our approach by conducting a high-throughput search for potential bond-coating materials among 90,000 compositions within the aluminum-cobalt-chromium-iron-nickel (Al-Co-Cr-Fe-Ni) system. From this extensive search, four compositions are synthesized, and the measured CTE values agree very well with theoretical predictions, hence validating our approach. The current optimized Debye-Grüneisen model combined with Density Functional Theory (DFT)-based thermodynamic database enables reliable and efficient high-throughput calculations of CTE of of a material without expensive phonon calculations.
期刊介绍:
Materialia is a multidisciplinary journal of materials science and engineering that publishes original peer-reviewed research articles. Articles in Materialia advance the understanding of the relationship between processing, structure, property, and function of materials.
Materialia publishes full-length research articles, review articles, and letters (short communications). In addition to receiving direct submissions, Materialia also accepts transfers from Acta Materialia, Inc. partner journals. Materialia offers authors the choice to publish on an open access model (with author fee), or on a subscription model (with no author fee).