C. Jammar , A. Reynés-Cardona , J. Vanaverbeke , N. Lefaible , T. Moens , S. Degraer , U. Braeckman
{"title":"Decadal trends in macrobenthic communities in offshore wind farms: Disentangling turbine and climate effects","authors":"C. Jammar , A. Reynés-Cardona , J. Vanaverbeke , N. Lefaible , T. Moens , S. Degraer , U. Braeckman","doi":"10.1016/j.seares.2024.102557","DOIUrl":null,"url":null,"abstract":"<div><div>We present results of a study covering 13 years of data (2008–2020), investigating for the first time the combined impacts of offshore windfarm (OWF) turbine-related and climate-related variables on soft-sediment macrobenthic communities in the Southern North Sea, focusing on two Belgian OWFs, Belwind and C-Power. We hypothesized that both turbine presence alongside climate change would affect macrobenthos in the long-term. Our analysis revealed that climate variables, particularly sea surface temperature (SST) influenced macrobenthos abundance, species richness and diversity. Species richness was additionally affected by the North Atlantic Oscillation (NAO). While most community indices increased with rising SST, diversity declined with higher temperatures. Our analysis supported that the already known short-term (max. 3 years) turbine-related impacts are consistent through time (13 years). Sediments near turbines and in deeper waters were richer in organic matter, characterized by finer sand, and supported more enriched soft-sediment communities compared to locations further away. A transition from the originally prevailing <em>Nephtys cirrosa</em> community towards a more diverse macrobenthic community was observed near the turbines. Our study emphasizes the need for long-term studies and the importance of distinguishing turbine presence from climate change effects when assessing the impacts of OWFs on marine ecosystems.</div></div>","PeriodicalId":50056,"journal":{"name":"Journal of Sea Research","volume":"203 ","pages":"Article 102557"},"PeriodicalIF":2.1000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Sea Research","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S138511012400090X","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MARINE & FRESHWATER BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
We present results of a study covering 13 years of data (2008–2020), investigating for the first time the combined impacts of offshore windfarm (OWF) turbine-related and climate-related variables on soft-sediment macrobenthic communities in the Southern North Sea, focusing on two Belgian OWFs, Belwind and C-Power. We hypothesized that both turbine presence alongside climate change would affect macrobenthos in the long-term. Our analysis revealed that climate variables, particularly sea surface temperature (SST) influenced macrobenthos abundance, species richness and diversity. Species richness was additionally affected by the North Atlantic Oscillation (NAO). While most community indices increased with rising SST, diversity declined with higher temperatures. Our analysis supported that the already known short-term (max. 3 years) turbine-related impacts are consistent through time (13 years). Sediments near turbines and in deeper waters were richer in organic matter, characterized by finer sand, and supported more enriched soft-sediment communities compared to locations further away. A transition from the originally prevailing Nephtys cirrosa community towards a more diverse macrobenthic community was observed near the turbines. Our study emphasizes the need for long-term studies and the importance of distinguishing turbine presence from climate change effects when assessing the impacts of OWFs on marine ecosystems.
期刊介绍:
The Journal of Sea Research is an international and multidisciplinary periodical on marine research, with an emphasis on the functioning of marine ecosystems in coastal and shelf seas, including intertidal, estuarine and brackish environments. As several subdisciplines add to this aim, manuscripts are welcome from the fields of marine biology, marine chemistry, marine sedimentology and physical oceanography, provided they add to the understanding of ecosystem processes.