Failure investigation and mitigation after experimental research reactor fuel plate deformation in an irradiation device

IF 1.9 3区 工程技术 Q1 NUCLEAR SCIENCE & TECHNOLOGY Nuclear Engineering and Design Pub Date : 2025-02-01 DOI:10.1016/j.nucengdes.2024.113796
B. Rossaert , C. Bojanowski , A. Leenaers , G. Cornelis , E. Feldman , E. Wilson , S.Van Dyck , J. Stevens , J. Wight
{"title":"Failure investigation and mitigation after experimental research reactor fuel plate deformation in an irradiation device","authors":"B. Rossaert ,&nbsp;C. Bojanowski ,&nbsp;A. Leenaers ,&nbsp;G. Cornelis ,&nbsp;E. Feldman ,&nbsp;E. Wilson ,&nbsp;S.Van Dyck ,&nbsp;J. Stevens ,&nbsp;J. Wight","doi":"10.1016/j.nucengdes.2024.113796","DOIUrl":null,"url":null,"abstract":"<div><div>Experimental research reactor fuel testing is conducted in the Belgian Reactor 2 (BR2) of the Belgian Nuclear Research Centre (SCK CEN) in dedicated irradiation vehicles or rigs. One such vehicle allows flat full-size fuel plates to be irradiated by inserting them into slotted baskets that captures a narrow portion of the longitudinal edges of the plates. The motion of the fuel plates within the baskets is possible within the narrow slots and thus, the plate is considered to be unattached. The design intentionally omits fixing mechanisms of the fuel plates to the baskets to facilitate the inspection and repositioning of the plates between the irradiation cycles and the accommodation of thermal expansion of the plates in the lateral direction. However, loosely inserted fuel plates have weak structural boundary conditions allowing for larger out-of-plane deflections caused by hydrodynamic loads exerted by the flowing coolant, as compared to those of fixed plates. Unexpected large deformations of plates occurred in several irradiation cycles that further resulted in a loss of cladding integrity. These deformations could not be attributed to a single source. This triggered a series of thermal hydraulic, structural, and fluid–structure interaction analyses aiming at understanding the observed phenomenon. The analyses revealed that, for a certain combination of unfavorable manufacturing and assembly tolerances, fuel plate edges could escape out of the slots in the irradiation basket due to the hydrodynamic load. Subsequently, the plate could become wedged inside the basket coolant channel opening. This resulted in reduced coolant flow and accelerated temperature increase and thermal expansion of the plate while under irradiation. This unfavorable feedback loop could then lead to excessive plate surface temperatures, deformed plates and cladding failure, as was observed in the experiments. These analyses not only provided a probable cause of the fuel plate failures, but also resulted in a new and improved design of the irradiation basket to avoid these issues in the future. A series of recent successful irradiations confirm that the sources of failures were identified correctly, and the implemented mitigations were adequate.</div></div>","PeriodicalId":19170,"journal":{"name":"Nuclear Engineering and Design","volume":"432 ","pages":"Article 113796"},"PeriodicalIF":1.9000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Engineering and Design","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0029549324008963","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Experimental research reactor fuel testing is conducted in the Belgian Reactor 2 (BR2) of the Belgian Nuclear Research Centre (SCK CEN) in dedicated irradiation vehicles or rigs. One such vehicle allows flat full-size fuel plates to be irradiated by inserting them into slotted baskets that captures a narrow portion of the longitudinal edges of the plates. The motion of the fuel plates within the baskets is possible within the narrow slots and thus, the plate is considered to be unattached. The design intentionally omits fixing mechanisms of the fuel plates to the baskets to facilitate the inspection and repositioning of the plates between the irradiation cycles and the accommodation of thermal expansion of the plates in the lateral direction. However, loosely inserted fuel plates have weak structural boundary conditions allowing for larger out-of-plane deflections caused by hydrodynamic loads exerted by the flowing coolant, as compared to those of fixed plates. Unexpected large deformations of plates occurred in several irradiation cycles that further resulted in a loss of cladding integrity. These deformations could not be attributed to a single source. This triggered a series of thermal hydraulic, structural, and fluid–structure interaction analyses aiming at understanding the observed phenomenon. The analyses revealed that, for a certain combination of unfavorable manufacturing and assembly tolerances, fuel plate edges could escape out of the slots in the irradiation basket due to the hydrodynamic load. Subsequently, the plate could become wedged inside the basket coolant channel opening. This resulted in reduced coolant flow and accelerated temperature increase and thermal expansion of the plate while under irradiation. This unfavorable feedback loop could then lead to excessive plate surface temperatures, deformed plates and cladding failure, as was observed in the experiments. These analyses not only provided a probable cause of the fuel plate failures, but also resulted in a new and improved design of the irradiation basket to avoid these issues in the future. A series of recent successful irradiations confirm that the sources of failures were identified correctly, and the implemented mitigations were adequate.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Nuclear Engineering and Design
Nuclear Engineering and Design 工程技术-核科学技术
CiteScore
3.40
自引率
11.80%
发文量
377
审稿时长
5 months
期刊介绍: Nuclear Engineering and Design covers the wide range of disciplines involved in the engineering, design, safety and construction of nuclear fission reactors. The Editors welcome papers both on applied and innovative aspects and developments in nuclear science and technology. Fundamentals of Reactor Design include: • Thermal-Hydraulics and Core Physics • Safety Analysis, Risk Assessment (PSA) • Structural and Mechanical Engineering • Materials Science • Fuel Behavior and Design • Structural Plant Design • Engineering of Reactor Components • Experiments Aspects beyond fundamentals of Reactor Design covered: • Accident Mitigation Measures • Reactor Control Systems • Licensing Issues • Safeguard Engineering • Economy of Plants • Reprocessing / Waste Disposal • Applications of Nuclear Energy • Maintenance • Decommissioning Papers on new reactor ideas and developments (Generation IV reactors) such as inherently safe modular HTRs, High Performance LWRs/HWRs and LMFBs/GFR will be considered; Actinide Burners, Accelerator Driven Systems, Energy Amplifiers and other special designs of power and research reactors and their applications are also encouraged.
期刊最新文献
Effects of recrystallization on fission gas behavior in U3Si2 fuel at LWR temperature: A combination of phase-field method and rate theory Editorial Board A quantitative analysis of ATF surface characteristics on critical heat flux using Machine learning Development of an on-line structural integrity assessment system for the primary loop pipeline in NPPs Research on safe disposal technology and progress of radioactive nuclear waste
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1