Bruno P. Serrao , Ye Kwon Huh , Eliot Ciuperca , Elvan Sahin , Kaibo Liu , Juliana P. Duarte
{"title":"A quantitative analysis of ATF surface characteristics on critical heat flux using Machine learning","authors":"Bruno P. Serrao , Ye Kwon Huh , Eliot Ciuperca , Elvan Sahin , Kaibo Liu , Juliana P. Duarte","doi":"10.1016/j.nucengdes.2025.113924","DOIUrl":null,"url":null,"abstract":"<div><div>The effects of surface characteristics on pool boiling Critical Heat Flux (CHF) are qualitatively understood based on previous investigations. However, more quantitative analyses are needed since the existing CHF correlations do not provide good predictions for modified surfaces. Using machine learning (ML) models as a tool, this study performed a quantitative analysis of relevant CHF parameters under pool boiling conditions: pressure, a dimensional feature, average roughness, static contact angle, surface orientation, and substrate thermal effusivity. A database was constructed by collecting accident tolerant fuels (ATF) CHF experimental data available from fourteen published studies. After hyperparameter optimization, the random forest (RF) model was selected for achieving the best fitting scores relative to other tested models. Feature importance models ranked static contact angle and pressure as the most important features, which is consistent with some of the literature CHF predictive models that take the surface characteristics into consideration. Finally, CHF predictions were obtained and compared to CHF experimental data. The effect of each feature on CHF was analyzed, while keeping other features fixed, by observing the experimental and predicted datapoints trends. The RF model demonstrated the ability to capture the experimental data trends, showing the RF model is suitable as a predictive pool boiling CHF model for this database.</div></div>","PeriodicalId":19170,"journal":{"name":"Nuclear Engineering and Design","volume":"435 ","pages":"Article 113924"},"PeriodicalIF":1.9000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Engineering and Design","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0029549325001013","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The effects of surface characteristics on pool boiling Critical Heat Flux (CHF) are qualitatively understood based on previous investigations. However, more quantitative analyses are needed since the existing CHF correlations do not provide good predictions for modified surfaces. Using machine learning (ML) models as a tool, this study performed a quantitative analysis of relevant CHF parameters under pool boiling conditions: pressure, a dimensional feature, average roughness, static contact angle, surface orientation, and substrate thermal effusivity. A database was constructed by collecting accident tolerant fuels (ATF) CHF experimental data available from fourteen published studies. After hyperparameter optimization, the random forest (RF) model was selected for achieving the best fitting scores relative to other tested models. Feature importance models ranked static contact angle and pressure as the most important features, which is consistent with some of the literature CHF predictive models that take the surface characteristics into consideration. Finally, CHF predictions were obtained and compared to CHF experimental data. The effect of each feature on CHF was analyzed, while keeping other features fixed, by observing the experimental and predicted datapoints trends. The RF model demonstrated the ability to capture the experimental data trends, showing the RF model is suitable as a predictive pool boiling CHF model for this database.
期刊介绍:
Nuclear Engineering and Design covers the wide range of disciplines involved in the engineering, design, safety and construction of nuclear fission reactors. The Editors welcome papers both on applied and innovative aspects and developments in nuclear science and technology.
Fundamentals of Reactor Design include:
• Thermal-Hydraulics and Core Physics
• Safety Analysis, Risk Assessment (PSA)
• Structural and Mechanical Engineering
• Materials Science
• Fuel Behavior and Design
• Structural Plant Design
• Engineering of Reactor Components
• Experiments
Aspects beyond fundamentals of Reactor Design covered:
• Accident Mitigation Measures
• Reactor Control Systems
• Licensing Issues
• Safeguard Engineering
• Economy of Plants
• Reprocessing / Waste Disposal
• Applications of Nuclear Energy
• Maintenance
• Decommissioning
Papers on new reactor ideas and developments (Generation IV reactors) such as inherently safe modular HTRs, High Performance LWRs/HWRs and LMFBs/GFR will be considered; Actinide Burners, Accelerator Driven Systems, Energy Amplifiers and other special designs of power and research reactors and their applications are also encouraged.