Investigation of an innovative flat-plate integrated collector-storage solar water heater with latent heat storage

Q1 Chemical Engineering International Journal of Thermofluids Pub Date : 2025-01-17 DOI:10.1016/j.ijft.2025.101091
Maria K. Koukou , John Konstantaras , George Dogkas , Kostas Lymperis , Vassilis N. Stathopoulos , Michail Gr. Vrachopoulos , Eleni Douvi , Υannis Caouris , Petros Dimas
{"title":"Investigation of an innovative flat-plate integrated collector-storage solar water heater with latent heat storage","authors":"Maria K. Koukou ,&nbsp;John Konstantaras ,&nbsp;George Dogkas ,&nbsp;Kostas Lymperis ,&nbsp;Vassilis N. Stathopoulos ,&nbsp;Michail Gr. Vrachopoulos ,&nbsp;Eleni Douvi ,&nbsp;Υannis Caouris ,&nbsp;Petros Dimas","doi":"10.1016/j.ijft.2025.101091","DOIUrl":null,"url":null,"abstract":"<div><div>A novel Integrated Collector Storage Solar Water Heater (ICSSWH) has been developed, in a variety of 3 sizes, and investigated at outdoor conditions, in the Greek climate. The devices consist of flat-plate collectors integrated with latent heat storage tanks at their back, filled with a Phase Change Material (PCM). A conventional paraffin wax PCM was applied, with a melting point of 53 °C. Two heat exchanger circuits, a closed loop collector-storage circuit for charging and an open loop (service water) for discharging process are immersed in the PCM tank. The heat charging and discharging processes of the storage tank are investigated, for various charging and discharging flow rates. The three device storage sizes have total volumes of 0.620, 0.808 and 1.148 m<sup>3</sup>, with corresponding solar collector areas of 1.51, 2.02 and 2.92 m<sup>2</sup>. During discharging, the stored heat in the PCM is delivered to tap water. A minimum acceptable water temperature of 38 °C is considered, according to international standards. Under normal insolation conditions, daily stored heat of about 4.2, 6.2 and 9 kWh were measured for the three mentioned sizes, respectively. Of this amount, about 3, 4.8 and 7 kWh were transferred to tap water, respectively. The heat transferred to the storage tank was above 41 % of the daily incident solar energy on the collector plane, for all studied cases. The daily hot water production was measured up to 88.4 ℓ, 137 ℓ and 190 ℓ for each mentioned size. Details of the Heat Transfer Fluid (HTF) and tap water temperature profiles are also extracted and presented.</div></div>","PeriodicalId":36341,"journal":{"name":"International Journal of Thermofluids","volume":"26 ","pages":"Article 101091"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Thermofluids","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666202725000394","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Chemical Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

A novel Integrated Collector Storage Solar Water Heater (ICSSWH) has been developed, in a variety of 3 sizes, and investigated at outdoor conditions, in the Greek climate. The devices consist of flat-plate collectors integrated with latent heat storage tanks at their back, filled with a Phase Change Material (PCM). A conventional paraffin wax PCM was applied, with a melting point of 53 °C. Two heat exchanger circuits, a closed loop collector-storage circuit for charging and an open loop (service water) for discharging process are immersed in the PCM tank. The heat charging and discharging processes of the storage tank are investigated, for various charging and discharging flow rates. The three device storage sizes have total volumes of 0.620, 0.808 and 1.148 m3, with corresponding solar collector areas of 1.51, 2.02 and 2.92 m2. During discharging, the stored heat in the PCM is delivered to tap water. A minimum acceptable water temperature of 38 °C is considered, according to international standards. Under normal insolation conditions, daily stored heat of about 4.2, 6.2 and 9 kWh were measured for the three mentioned sizes, respectively. Of this amount, about 3, 4.8 and 7 kWh were transferred to tap water, respectively. The heat transferred to the storage tank was above 41 % of the daily incident solar energy on the collector plane, for all studied cases. The daily hot water production was measured up to 88.4 ℓ, 137 ℓ and 190 ℓ for each mentioned size. Details of the Heat Transfer Fluid (HTF) and tap water temperature profiles are also extracted and presented.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Thermofluids
International Journal of Thermofluids Engineering-Mechanical Engineering
CiteScore
10.10
自引率
0.00%
发文量
111
审稿时长
66 days
期刊最新文献
A review of carbon and aluminium nanofluids and elastocaloric materials for heating and cooling applications AI-heat transfer analysis of casson fluid in uniformly heated enclosure with semi heated baffle Parametric enviro-economic analysis of cooling photovoltaic panels with phase change materials Improving the thermal performance of a windcatcher employing cooling pipes with annular fins: Numerical evaluation Editorial: Advances in heat transfer science: Enhanced techniques for modern industrial applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1