Enhancing precision in multiple sclerosis lesion segmentation: A U-net based machine learning approach with data augmentation

Q4 Neuroscience Neuroimage. Reports Pub Date : 2025-02-01 DOI:10.1016/j.ynirp.2025.100235
Oezdemir Cetin , Berkay Canel , Gamze Dogali , Unal Sakoglu
{"title":"Enhancing precision in multiple sclerosis lesion segmentation: A U-net based machine learning approach with data augmentation","authors":"Oezdemir Cetin ,&nbsp;Berkay Canel ,&nbsp;Gamze Dogali ,&nbsp;Unal Sakoglu","doi":"10.1016/j.ynirp.2025.100235","DOIUrl":null,"url":null,"abstract":"<div><div>Segmentation of Multiple Sclerosis (MS) lesions from Magnetic Resonance Imaging (MRI) data presents a significant challenge due to the necessity for large volumes of training data and a sophisticated training process. Traditional MRI datasets often lack the extensive sample sizes required for effective training, necessitating the exploration of alternative methods for accurate segmentation. This study proposes a robust machine learning algorithm designed to identify MS lesions using both single-modal and multi-modal MRI data. The proposed algorithm employs Convolutional Neural Networks (CNNs) in the form of U-Net architecture, a renowned model for biomedical image segmentation. To address the issue of insufficient training data, data augmentation techniques have been implemented, enhancing the diversity and volume of the training set. The dataset for this study was created from MRI data of 20 subjects. The algorithm's effectiveness was evaluated using the DSC score, a statistical tool that measures the similarity between two samples. The model achieved a DSC score of 0.7960 in the training set and 0.7912 in the test set, demonstrating its effectiveness in performing segmentation of MS from multi-modal MRI data. The predicted locations of MS lesions were compared with the corresponding layers of white matter, gray matter, and cerebrospinal fluid within the brain. This innovative approach aims to enhance the accuracy and efficiency of MS lesion segmentation, contributing to advancements in precision medicine and the overall understanding of MS.</div></div>","PeriodicalId":74277,"journal":{"name":"Neuroimage. Reports","volume":"5 1","pages":"Article 100235"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroimage. Reports","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666956025000030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Neuroscience","Score":null,"Total":0}
引用次数: 0

Abstract

Segmentation of Multiple Sclerosis (MS) lesions from Magnetic Resonance Imaging (MRI) data presents a significant challenge due to the necessity for large volumes of training data and a sophisticated training process. Traditional MRI datasets often lack the extensive sample sizes required for effective training, necessitating the exploration of alternative methods for accurate segmentation. This study proposes a robust machine learning algorithm designed to identify MS lesions using both single-modal and multi-modal MRI data. The proposed algorithm employs Convolutional Neural Networks (CNNs) in the form of U-Net architecture, a renowned model for biomedical image segmentation. To address the issue of insufficient training data, data augmentation techniques have been implemented, enhancing the diversity and volume of the training set. The dataset for this study was created from MRI data of 20 subjects. The algorithm's effectiveness was evaluated using the DSC score, a statistical tool that measures the similarity between two samples. The model achieved a DSC score of 0.7960 in the training set and 0.7912 in the test set, demonstrating its effectiveness in performing segmentation of MS from multi-modal MRI data. The predicted locations of MS lesions were compared with the corresponding layers of white matter, gray matter, and cerebrospinal fluid within the brain. This innovative approach aims to enhance the accuracy and efficiency of MS lesion segmentation, contributing to advancements in precision medicine and the overall understanding of MS.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Neuroimage. Reports
Neuroimage. Reports Neuroscience (General)
CiteScore
1.90
自引率
0.00%
发文量
0
审稿时长
87 days
期刊最新文献
Radiation-induced brain injury in non-human primates: A dual tracer PET study with [11C]MPC-6827 and [11C]PiB Practical scan-length considerations for mapping upper limb movements to the somatosensory/motor cortex at 7T: A pilot study Utilization of resting-state electroencephalography spectral power in convolutional neural networks for classification of primary progressive aphasia Brain topology and cognitive outcomes after cardiac arrest: A graph theoretical analysis of fMRI data The influence of post-processing methods and frequency bands on rs-fMRI: An example of electroacupuncture at Zusanli (ST36)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1