Practical scan-length considerations for mapping upper limb movements to the somatosensory/motor cortex at 7T: A pilot study

Q4 Neuroscience Neuroimage. Reports Pub Date : 2025-02-18 DOI:10.1016/j.ynirp.2025.100240
D. Rangaprakash , Olivia E. Rowe , Hyungeun Song , Samantha Gutierrez-Arango , Julianna Gerold , Erica A. Israel , Michael F. Fernandez , Matthew J. Carty , Hugh M. Herr , Robert L. Barry
{"title":"Practical scan-length considerations for mapping upper limb movements to the somatosensory/motor cortex at 7T: A pilot study","authors":"D. Rangaprakash ,&nbsp;Olivia E. Rowe ,&nbsp;Hyungeun Song ,&nbsp;Samantha Gutierrez-Arango ,&nbsp;Julianna Gerold ,&nbsp;Erica A. Israel ,&nbsp;Michael F. Fernandez ,&nbsp;Matthew J. Carty ,&nbsp;Hugh M. Herr ,&nbsp;Robert L. Barry","doi":"10.1016/j.ynirp.2025.100240","DOIUrl":null,"url":null,"abstract":"<div><div>The relationship between motor cortex (M1) and upper limb movements has been investigated extensively using functional MRI (fMRI). While most research has focused on applications, very few studies have focused on practical aspects of developing the fMRI protocol. Thus, the effect of scan length on M1 activations during various upper limb movements remains unclear. Scan length constraints are important for conducting motor experiments within a 60- or 90-minute scan session. We targeted this gap in the literature in this pilot study by investigating 7T fMRI activations in a male participant while performing eight different upper limb movements (of the fingers, wrist, and elbow) across 16 task runs (8 with the left arm, 8 with the right arm, 88 minutes total fMRI duration). Standard activation analyses were performed (<em>Z</em> &gt; 3.1, <em>p</em> &lt; 0.01, cluster thresholded) independently for 14 different cases (2 runs through 8 runs, left and right arm) and subsequently compared. We found diminishing returns, presented as activations gradually plateauing, with higher number of runs. We observed two broad categories of movements, one with generally higher activation (more activated voxels and higher Z-stats) and the other with lower activation. To achieve similar statistical power, movements with lower activation required longer scanning (more runs). Based on these observations, we propose a ‘<em>one size does not fit all</em>’ practical protocol within a 60-, 75-, or 90- minute scan session, wherein different numbers of runs are assigned for different movements. We validated the 75-minute protocol using seven separate scans (N = 3). Our study could benefit researchers who are designing upper limb fMRI experiments.</div></div>","PeriodicalId":74277,"journal":{"name":"Neuroimage. Reports","volume":"5 1","pages":"Article 100240"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroimage. Reports","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S266695602500008X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Neuroscience","Score":null,"Total":0}
引用次数: 0

Abstract

The relationship between motor cortex (M1) and upper limb movements has been investigated extensively using functional MRI (fMRI). While most research has focused on applications, very few studies have focused on practical aspects of developing the fMRI protocol. Thus, the effect of scan length on M1 activations during various upper limb movements remains unclear. Scan length constraints are important for conducting motor experiments within a 60- or 90-minute scan session. We targeted this gap in the literature in this pilot study by investigating 7T fMRI activations in a male participant while performing eight different upper limb movements (of the fingers, wrist, and elbow) across 16 task runs (8 with the left arm, 8 with the right arm, 88 minutes total fMRI duration). Standard activation analyses were performed (Z > 3.1, p < 0.01, cluster thresholded) independently for 14 different cases (2 runs through 8 runs, left and right arm) and subsequently compared. We found diminishing returns, presented as activations gradually plateauing, with higher number of runs. We observed two broad categories of movements, one with generally higher activation (more activated voxels and higher Z-stats) and the other with lower activation. To achieve similar statistical power, movements with lower activation required longer scanning (more runs). Based on these observations, we propose a ‘one size does not fit all’ practical protocol within a 60-, 75-, or 90- minute scan session, wherein different numbers of runs are assigned for different movements. We validated the 75-minute protocol using seven separate scans (N = 3). Our study could benefit researchers who are designing upper limb fMRI experiments.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Neuroimage. Reports
Neuroimage. Reports Neuroscience (General)
CiteScore
1.90
自引率
0.00%
发文量
0
审稿时长
87 days
期刊最新文献
Unsupervised subtyping of motor dysfunction of Parkinson's disease and its structural brain imaging correlates Domain-specific brain regions are associated with cognitive impairment in progressive supranuclear palsy Functional connectivity of subsystems of the default-mode network in patients with early psychotic symptoms Radiation-induced brain injury in non-human primates: A dual tracer PET study with [11C]MPC-6827 and [11C]PiB Practical scan-length considerations for mapping upper limb movements to the somatosensory/motor cortex at 7T: A pilot study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1