Mode conversions and intersections of Lamb waves in one-dimensional hexagonal piezoelectric quasicrystal nanoplates based on the integral nonlocal theory
Xinxin Wang , Jiangong Yu , Bo Zhang , Lahoucine Elmaimouni , Pingmei Ming
{"title":"Mode conversions and intersections of Lamb waves in one-dimensional hexagonal piezoelectric quasicrystal nanoplates based on the integral nonlocal theory","authors":"Xinxin Wang , Jiangong Yu , Bo Zhang , Lahoucine Elmaimouni , Pingmei Ming","doi":"10.1016/j.wavemoti.2024.103479","DOIUrl":null,"url":null,"abstract":"<div><div>Phonon, phason, and electrical coupling characteristics of Lamb waves in one-dimensional hexagonal piezoelectric quasicrystal nanoplates are studied by accounting for the nonlocal effect. The coupled dynamic models are derived based on the integral form of nonlocal theory and linear elasticity theory of piezoelectric quasicrystal. Subsequently, dispersion curves and displacement distributions are computed employing the Legendre orthogonal polynomial method. All influences of the phonon-phason coupling, piezoelectric and nonlocal effects on the wave characteristics are analyzed. Furthermore, a detailed analysis of the interaction between piezoelectric and nonlocal effects is provided. The results indicate that mode conversions take place when adjacent phonon and phason modes exhibit the same displacement symmetry, while mode intersections occur when the adjacent phonon and phason modes exhibit different displacement symmetries. The coupling of phonon and phason fields induces the mode conversion, and phonon-phason coupling and piezoelectric effect amplifies this phenomenon. The piezoelectric effect enhances the nonlocal effect, whereas the nonlocal effect weakens the piezoelectric effect, with a more pronounced interaction observed in phonon modes. The obtained results establish a theoretical reference for the design and optimization of piezoelectric nanoscale devices.</div></div>","PeriodicalId":49367,"journal":{"name":"Wave Motion","volume":"134 ","pages":"Article 103479"},"PeriodicalIF":2.1000,"publicationDate":"2024-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wave Motion","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165212524002099","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Phonon, phason, and electrical coupling characteristics of Lamb waves in one-dimensional hexagonal piezoelectric quasicrystal nanoplates are studied by accounting for the nonlocal effect. The coupled dynamic models are derived based on the integral form of nonlocal theory and linear elasticity theory of piezoelectric quasicrystal. Subsequently, dispersion curves and displacement distributions are computed employing the Legendre orthogonal polynomial method. All influences of the phonon-phason coupling, piezoelectric and nonlocal effects on the wave characteristics are analyzed. Furthermore, a detailed analysis of the interaction between piezoelectric and nonlocal effects is provided. The results indicate that mode conversions take place when adjacent phonon and phason modes exhibit the same displacement symmetry, while mode intersections occur when the adjacent phonon and phason modes exhibit different displacement symmetries. The coupling of phonon and phason fields induces the mode conversion, and phonon-phason coupling and piezoelectric effect amplifies this phenomenon. The piezoelectric effect enhances the nonlocal effect, whereas the nonlocal effect weakens the piezoelectric effect, with a more pronounced interaction observed in phonon modes. The obtained results establish a theoretical reference for the design and optimization of piezoelectric nanoscale devices.
期刊介绍:
Wave Motion is devoted to the cross fertilization of ideas, and to stimulating interaction between workers in various research areas in which wave propagation phenomena play a dominant role. The description and analysis of wave propagation phenomena provides a unifying thread connecting diverse areas of engineering and the physical sciences such as acoustics, optics, geophysics, seismology, electromagnetic theory, solid and fluid mechanics.
The journal publishes papers on analytical, numerical and experimental methods. Papers that address fundamentally new topics in wave phenomena or develop wave propagation methods for solving direct and inverse problems are of interest to the journal.