Non-collinear interaction of Rayleigh–Lamb and shear horizontal waves in a finite region in a plate

IF 2.1 3区 物理与天体物理 Q2 ACOUSTICS Wave Motion Pub Date : 2024-12-28 DOI:10.1016/j.wavemoti.2024.103488
Yosuke Ishii, Tomoya Enoki , Shiro Biwa
{"title":"Non-collinear interaction of Rayleigh–Lamb and shear horizontal waves in a finite region in a plate","authors":"Yosuke Ishii,&nbsp;Tomoya Enoki ,&nbsp;Shiro Biwa","doi":"10.1016/j.wavemoti.2024.103488","DOIUrl":null,"url":null,"abstract":"<div><div>Non-collinear interaction of guided elastic waves in a homogeneous and isotropic plate with quadratic material nonlinearity is analyzed theoretically to investigate the sum and difference frequency generation from a finite interaction region of primary waves. Using a perturbation approach and the time-harmonic Green function for isotropic plates, an explicit expression is derived for the displacement field of nonlinearly generated secondary waves when two primary monochromatic straight-crested Rayleigh–Lamb/shear horizontal waves intersect at an arbitrary angle in a right cylindrical region of arbitrary cross-section and height equal to the plate thickness. The resulting displacement observed far away from the interaction region in the direction of the wavevector of driving forces (i.e., the sum or difference of wavevectors of primary modes) is shown to grow in proportion to the interaction volume when the wavenumber of secondary mode coincides with that of driving forces with nonzero energy transfer from the primary to the secondary modes. The influence of the interaction volume and the intersection angle on the secondary wave field is investigated for a special case where the interaction region is a right circular cylinder. Furthermore, the non-collinear interaction generating the secondary mode with negative group velocity is also examined.</div></div>","PeriodicalId":49367,"journal":{"name":"Wave Motion","volume":"134 ","pages":"Article 103488"},"PeriodicalIF":2.1000,"publicationDate":"2024-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wave Motion","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S016521252400218X","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Non-collinear interaction of guided elastic waves in a homogeneous and isotropic plate with quadratic material nonlinearity is analyzed theoretically to investigate the sum and difference frequency generation from a finite interaction region of primary waves. Using a perturbation approach and the time-harmonic Green function for isotropic plates, an explicit expression is derived for the displacement field of nonlinearly generated secondary waves when two primary monochromatic straight-crested Rayleigh–Lamb/shear horizontal waves intersect at an arbitrary angle in a right cylindrical region of arbitrary cross-section and height equal to the plate thickness. The resulting displacement observed far away from the interaction region in the direction of the wavevector of driving forces (i.e., the sum or difference of wavevectors of primary modes) is shown to grow in proportion to the interaction volume when the wavenumber of secondary mode coincides with that of driving forces with nonzero energy transfer from the primary to the secondary modes. The influence of the interaction volume and the intersection angle on the secondary wave field is investigated for a special case where the interaction region is a right circular cylinder. Furthermore, the non-collinear interaction generating the secondary mode with negative group velocity is also examined.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Wave Motion
Wave Motion 物理-力学
CiteScore
4.10
自引率
8.30%
发文量
118
审稿时长
3 months
期刊介绍: Wave Motion is devoted to the cross fertilization of ideas, and to stimulating interaction between workers in various research areas in which wave propagation phenomena play a dominant role. The description and analysis of wave propagation phenomena provides a unifying thread connecting diverse areas of engineering and the physical sciences such as acoustics, optics, geophysics, seismology, electromagnetic theory, solid and fluid mechanics. The journal publishes papers on analytical, numerical and experimental methods. Papers that address fundamentally new topics in wave phenomena or develop wave propagation methods for solving direct and inverse problems are of interest to the journal.
期刊最新文献
On the nonlocal matrix Hirota equation with complex parity symmetry: Integrability, Darboux transformation and exact solutions Floquet scattering of shallow water waves by a vertically oscillating plate A conditionally integrable non-reciprocal wave equation with diode properties N-periodic wave solutions of the (2+1)-dimensional integrable nonlocal nonlinear Schrödinger equations Analytical modeling of damped locally-resonant metamaterials
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1