Resolving β relaxation and enhancing thermal stability of the medium-entropy metallic glass Zr35Ti30Be27.5Fe7.5 through modulating initial cooling temperature

IF 3 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Materialia Pub Date : 2024-12-01 DOI:10.1016/j.mtla.2024.102306
Xiong Shang , Jichao Qiao , Wenkang Tu , Xiaodong Wang , Yanhui Zhang , Shidong Feng , Zijing Li , Li-Min Wang
{"title":"Resolving β relaxation and enhancing thermal stability of the medium-entropy metallic glass Zr35Ti30Be27.5Fe7.5 through modulating initial cooling temperature","authors":"Xiong Shang ,&nbsp;Jichao Qiao ,&nbsp;Wenkang Tu ,&nbsp;Xiaodong Wang ,&nbsp;Yanhui Zhang ,&nbsp;Shidong Feng ,&nbsp;Zijing Li ,&nbsp;Li-Min Wang","doi":"10.1016/j.mtla.2024.102306","DOIUrl":null,"url":null,"abstract":"<div><div>Most conventional metallic glasses often exhibit an excess wing rather than clear resolving the <em>β</em> relaxation, making it challenging to fully understand this kinetic phenomenon. In this study, we investigated <em>β</em> relaxation in Zr<sub>35</sub>Ti<sub>30</sub>Be<sub>27.5</sub>Fe<sub>7.5</sub> metallic glasses by varying the initial cooling temperature while maintaining constant cooling rates. The study results demonstrate that increasing the initial cooling temperature effectively resolve the <em>β</em> relaxation, which in turn significantly influences the glass transition and crystallization temperatures, enhancing the thermal stability of the metallic glass. Stress relaxation studies indicate that glasses quenched from higher melt temperatures exhibit a lower non-exponential parameter <em>β</em><sub>KWW</sub>, indicative of greater dynamic heterogeneity, along with a broader distribution of relaxation times in the as-quenched samples. This study suggests that higher initial cooling temperatures not only facilitate a clearer examination of <em>β</em> relaxation but also promote structural heterogeneity in metallic glasses, which is linked to the observed <em>β</em> relaxation and the improvement in thermal stability.</div></div>","PeriodicalId":47623,"journal":{"name":"Materialia","volume":"38 ","pages":"Article 102306"},"PeriodicalIF":3.0000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materialia","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S258915292400303X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Most conventional metallic glasses often exhibit an excess wing rather than clear resolving the β relaxation, making it challenging to fully understand this kinetic phenomenon. In this study, we investigated β relaxation in Zr35Ti30Be27.5Fe7.5 metallic glasses by varying the initial cooling temperature while maintaining constant cooling rates. The study results demonstrate that increasing the initial cooling temperature effectively resolve the β relaxation, which in turn significantly influences the glass transition and crystallization temperatures, enhancing the thermal stability of the metallic glass. Stress relaxation studies indicate that glasses quenched from higher melt temperatures exhibit a lower non-exponential parameter βKWW, indicative of greater dynamic heterogeneity, along with a broader distribution of relaxation times in the as-quenched samples. This study suggests that higher initial cooling temperatures not only facilitate a clearer examination of β relaxation but also promote structural heterogeneity in metallic glasses, which is linked to the observed β relaxation and the improvement in thermal stability.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Materialia
Materialia MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
6.40
自引率
2.90%
发文量
345
审稿时长
36 days
期刊介绍: Materialia is a multidisciplinary journal of materials science and engineering that publishes original peer-reviewed research articles. Articles in Materialia advance the understanding of the relationship between processing, structure, property, and function of materials. Materialia publishes full-length research articles, review articles, and letters (short communications). In addition to receiving direct submissions, Materialia also accepts transfers from Acta Materialia, Inc. partner journals. Materialia offers authors the choice to publish on an open access model (with author fee), or on a subscription model (with no author fee).
期刊最新文献
A TEM study of microstructure inhomogeneity in a superalloy powder: Implications for microstructure development Thermal analysis and Magnetic characterization of M-type SrFe12O19 nanodisks Hierarchal heterogeneity of microstructure via aging of Ti-6Al-4V alloy with α+α′ duplex initial microstructure and its effect on strengthening Exploring solute segregation in sputtered W-10 at. % M (M=Ti, Ag, and Ta): Experimental insights and atomistic modeling Mechanical properties and deformation mechanisms of phase-separated soda-lime-silica glass
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1