Selective leaching of Ga and Ge from zinc powder replacement residue and determining influential role of magnetic field with an ultrasonic field

IF 4.9 2区 工程技术 Q1 ENGINEERING, CHEMICAL Minerals Engineering Pub Date : 2025-02-05 DOI:10.1016/j.mineng.2025.109196
Tianxiang Zheng , Yuanxin Liang , Dewei Xun , Meng Sun , Biao Ding , Zhe Shen , Qiang Li , Peijian Shi , Bangfei Zhou , Chunmei Liu , Caigui Wu , Weili Ren , Yunbo Zhong
{"title":"Selective leaching of Ga and Ge from zinc powder replacement residue and determining influential role of magnetic field with an ultrasonic field","authors":"Tianxiang Zheng ,&nbsp;Yuanxin Liang ,&nbsp;Dewei Xun ,&nbsp;Meng Sun ,&nbsp;Biao Ding ,&nbsp;Zhe Shen ,&nbsp;Qiang Li ,&nbsp;Peijian Shi ,&nbsp;Bangfei Zhou ,&nbsp;Chunmei Liu ,&nbsp;Caigui Wu ,&nbsp;Weili Ren ,&nbsp;Yunbo Zhong","doi":"10.1016/j.mineng.2025.109196","DOIUrl":null,"url":null,"abstract":"<div><div>Gallium (Ga) and germanium (Ge) are rare metals crucial for national applications in semiconductor and military sector. The metals are usually leached from zinc powder replacement residue (ZPRR) produced in the wet zinc refining process. In this study, Ge and Ga were leached from sulfuric acid with the application of a strong magnetic field and an ultrasonic field. The leaching mechanism in the strong magnetic field and ultrasonic field was studied using various characterization techniques such as XRD, SEM, XPS, FT-IR, etc. Kinetic studies show that the leaching of Ga and Ge from ZPRR is influenced by a combination of surface chemical processes and diffusion of reactants. When under the influence of 10 T magnetic field, the apparent activation energy for Ga and Ge were 30.44 kJ/mol and 30.97 kJ/mol, respectively. When the 10 T strong magnetic field was compound with a 360 W ultrasonic field, the apparent activation energy for Ga and Ge fell to 24.70 kJ/mol and 20.43 kJ/mol, respectively. Through XPS, FT-IR, XRD, it was found that the strong magnetic field can influence and suppress the hydrolysis of Fe(OH)<sub>3</sub> during the reaction process and can also alter the existence form of Si(OH)<sub>4</sub>. Moreover, the combined ultrasonic field can also break the ZPRR encapsulating structure, intensifying the boosting impact of the magnetic field. The optimal leaching parameters were discovered by one-factor experiments and response surface methodology (RSM). This investigation proposes a novel and effective leaching technique for the extraction of Ga and Ge from ZPRR, while concurrently mitigating the environmental risks associated with ZPRR processing.</div></div>","PeriodicalId":18594,"journal":{"name":"Minerals Engineering","volume":"224 ","pages":"Article 109196"},"PeriodicalIF":4.9000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Minerals Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S089268752500024X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Gallium (Ga) and germanium (Ge) are rare metals crucial for national applications in semiconductor and military sector. The metals are usually leached from zinc powder replacement residue (ZPRR) produced in the wet zinc refining process. In this study, Ge and Ga were leached from sulfuric acid with the application of a strong magnetic field and an ultrasonic field. The leaching mechanism in the strong magnetic field and ultrasonic field was studied using various characterization techniques such as XRD, SEM, XPS, FT-IR, etc. Kinetic studies show that the leaching of Ga and Ge from ZPRR is influenced by a combination of surface chemical processes and diffusion of reactants. When under the influence of 10 T magnetic field, the apparent activation energy for Ga and Ge were 30.44 kJ/mol and 30.97 kJ/mol, respectively. When the 10 T strong magnetic field was compound with a 360 W ultrasonic field, the apparent activation energy for Ga and Ge fell to 24.70 kJ/mol and 20.43 kJ/mol, respectively. Through XPS, FT-IR, XRD, it was found that the strong magnetic field can influence and suppress the hydrolysis of Fe(OH)3 during the reaction process and can also alter the existence form of Si(OH)4. Moreover, the combined ultrasonic field can also break the ZPRR encapsulating structure, intensifying the boosting impact of the magnetic field. The optimal leaching parameters were discovered by one-factor experiments and response surface methodology (RSM). This investigation proposes a novel and effective leaching technique for the extraction of Ga and Ge from ZPRR, while concurrently mitigating the environmental risks associated with ZPRR processing.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Minerals Engineering
Minerals Engineering 工程技术-工程:化工
CiteScore
8.70
自引率
18.80%
发文量
519
审稿时长
81 days
期刊介绍: The purpose of the journal is to provide for the rapid publication of topical papers featuring the latest developments in the allied fields of mineral processing and extractive metallurgy. Its wide ranging coverage of research and practical (operating) topics includes physical separation methods, such as comminution, flotation concentration and dewatering, chemical methods such as bio-, hydro-, and electro-metallurgy, analytical techniques, process control, simulation and instrumentation, and mineralogical aspects of processing. Environmental issues, particularly those pertaining to sustainable development, will also be strongly covered.
期刊最新文献
Flowsheet development for the selective flotation of lepidolite from the Beauvoir granite from mineralogical insights Editorial Board The effect of hydrogen pre-reduction on the carbon-reducibility of pelletised UG2 chromite Slag-copper matte equilibria in CaO modified Fe-O-Al2O3-SiO2 slags at fixed p(O2), p(S2), p(SO2), and 1200 °C for mixed concentrate-WEEE feed Mechanism of quartz flotation separation from gypsum using tetradecyl trimethyl ammonium chloride: Guiding the improvement of phosphogypsum quality
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1