Interface formation by composite electrolytes using Li7La3Zr2O12 / Li2OHBr for bulk-type sintering-free oxide-based all-solid-state batteries

IF 3.3 4区 材料科学 Q3 CHEMISTRY, PHYSICAL Solid State Ionics Pub Date : 2025-02-01 DOI:10.1016/j.ssi.2024.116770
Yusuke Taniguchi , Mari Yamamoto , Atsutaka Kato , Masanari Takahashi
{"title":"Interface formation by composite electrolytes using Li7La3Zr2O12 / Li2OHBr for bulk-type sintering-free oxide-based all-solid-state batteries","authors":"Yusuke Taniguchi ,&nbsp;Mari Yamamoto ,&nbsp;Atsutaka Kato ,&nbsp;Masanari Takahashi","doi":"10.1016/j.ssi.2024.116770","DOIUrl":null,"url":null,"abstract":"<div><div>Garnet-type crystalline Li<sub>7</sub>La<sub>3</sub>Zr<sub>2</sub>O<sub>12</sub> (LLZs) is an oxide-based electrolyte (SE) that exhibits high ionic conductivity at room temperature. However, the LLZs green compact exhibits a remarkably low conductivity owing to the challenges in deforming LLZ particles using solely cold-pressing. Therefore, the ionic conduction path becomes extremely narrow in point contact, resulting in increased grain boundary resistance. We proposed the realization of a green compact with high ionic conductivity and a large area by combining the antiperovskite-like crystal Li<sub>2</sub>OHBr as a soft SE and LLZs as a highly conductive hard SE. In this study, highly lithium-ion-conductive composites of LLZs and antiperovskite-like crystal Li<sub>2</sub>OHBr were prepared using ball milling. The composite powders were then palletized via uniaxial pressing at room temperature. Cross-sectional scanning electron microscopy images of the green compact revealed the presence of Li<sub>2</sub>OHBr phases in the voids of LLZs particles. The total conductivity of the obtained 30 vol% Li<sub>2</sub>OHBr-LLZ green compact was 7.1 × 10<sup>−5</sup> S cm<sup>−1</sup> at 60 °C. Moreover, sintering-free oxide-based all-solid-state battery was successfully fabricated using the 50 vol% Li<sub>2</sub>OHBr-LLZs composite and LiFePO<sub>4</sub> to obtain a reversible capacity of approximately 90 mAh g<sup>−1</sup>.</div></div>","PeriodicalId":431,"journal":{"name":"Solid State Ionics","volume":"420 ","pages":"Article 116770"},"PeriodicalIF":3.3000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid State Ionics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167273824003187","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Garnet-type crystalline Li7La3Zr2O12 (LLZs) is an oxide-based electrolyte (SE) that exhibits high ionic conductivity at room temperature. However, the LLZs green compact exhibits a remarkably low conductivity owing to the challenges in deforming LLZ particles using solely cold-pressing. Therefore, the ionic conduction path becomes extremely narrow in point contact, resulting in increased grain boundary resistance. We proposed the realization of a green compact with high ionic conductivity and a large area by combining the antiperovskite-like crystal Li2OHBr as a soft SE and LLZs as a highly conductive hard SE. In this study, highly lithium-ion-conductive composites of LLZs and antiperovskite-like crystal Li2OHBr were prepared using ball milling. The composite powders were then palletized via uniaxial pressing at room temperature. Cross-sectional scanning electron microscopy images of the green compact revealed the presence of Li2OHBr phases in the voids of LLZs particles. The total conductivity of the obtained 30 vol% Li2OHBr-LLZ green compact was 7.1 × 10−5 S cm−1 at 60 °C. Moreover, sintering-free oxide-based all-solid-state battery was successfully fabricated using the 50 vol% Li2OHBr-LLZs composite and LiFePO4 to obtain a reversible capacity of approximately 90 mAh g−1.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Li7La3Zr2O12 / Li2OHBr复合电解质在体型无烧结氧化基全固态电池中的界面形成
石榴石型晶体Li7La3Zr2O12 (LLZs)是一种在室温下表现出高离子导电性的氧化物基电解质(SE)。然而,由于仅使用冷压变形LLZ颗粒的挑战,LLZ绿色致密体表现出非常低的导电性。因此,离子传导路径在点接触时变得非常狭窄,导致晶界电阻增加。我们提出通过将反钙钛矿类晶体Li2OHBr作为软SE和LLZs作为高导电性硬SE结合,实现具有高离子电导率和大面积的绿色紧凑体。本研究采用球磨法制备了高锂离子导电性的LLZs和类反钙钛矿晶体Li2OHBr复合材料。然后在室温下通过单轴压制将复合粉末制成托盘。绿色致密物的横截面扫描电镜图像显示,在LLZs粒子的空隙中存在Li2OHBr相。所得的30 vol% Li2OHBr-LLZ绿色致密材料在60℃时的总电导率为7.1 × 10−5 S cm−1。此外,使用50 vol% Li2OHBr-LLZs复合材料和LiFePO4成功制备了无烧结氧化物基全固态电池,获得了约90 mAh g−1的可逆容量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Solid State Ionics
Solid State Ionics 物理-物理:凝聚态物理
CiteScore
6.10
自引率
3.10%
发文量
152
审稿时长
58 days
期刊介绍: This interdisciplinary journal is devoted to the physics, chemistry and materials science of diffusion, mass transport, and reactivity of solids. The major part of each issue is devoted to articles on: (i) physics and chemistry of defects in solids; (ii) reactions in and on solids, e.g. intercalation, corrosion, oxidation, sintering; (iii) ion transport measurements, mechanisms and theory; (iv) solid state electrochemistry; (v) ionically-electronically mixed conducting solids. Related technological applications are also included, provided their characteristics are interpreted in terms of the basic solid state properties. Review papers and relevant symposium proceedings are welcome.
期刊最新文献
P2-type Na0.6Mg0.2Cu0.1Mn0.7O2 cathode materials with enhanced cyclic stability for high-energy Na-ion batteries Influence of defect interactions on the electrical conductivity of gadolinium-doped ceria Enhanced ionic conductivity and dielectric performance of CaB₂O₄-doped 2-hydroxyethyl cellulose polymer electrolytes for electrical double layer capacitor applications One – Step synthesis of glass ceramic Li6PS5Cl1-xIx solid electrolytes for all-solid-state batteries Editorial Board
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1