High-velocity impact behavior of scarf-repaired composite laminates

IF 8.3 1区 材料科学 Q1 MATERIALS SCIENCE, COMPOSITES Composites Science and Technology Pub Date : 2024-12-18 DOI:10.1016/j.compscitech.2024.111023
Zhicheng Feng , Peng Liu , Shanyong Xuan , Yimeng Shan , Xuefeng Yao
{"title":"High-velocity impact behavior of scarf-repaired composite laminates","authors":"Zhicheng Feng ,&nbsp;Peng Liu ,&nbsp;Shanyong Xuan ,&nbsp;Yimeng Shan ,&nbsp;Xuefeng Yao","doi":"10.1016/j.compscitech.2024.111023","DOIUrl":null,"url":null,"abstract":"<div><div>This study provides a systematic investigation of the perforation resistance and failure mechanisms of scarf-repaired composite laminates under high-velocity impact. First, a geometric model of the scarf-repaired laminate was established based on a rate-dependent constitutive equation, with the adhesive layer modeled using the Cowper-Symonds constitutive law, both implemented in ABAQUS/Explicit. Second, model parameters were calibrated using experimental data from the literature, and the numerical predictions aligned well with the experimental results, validating the model's accuracy in predicting the laminate response under high-velocity impact. Finally, various impact conditions, including impact velocity (angle and speed), locations and different scarf angles, were simulated to systematically analyze the impact resistance and failure modes of the repaired structure. This research provides theoretical and practical insights into the design and engineering applications of damage repair in composite structures.</div></div>","PeriodicalId":283,"journal":{"name":"Composites Science and Technology","volume":"261 ","pages":"Article 111023"},"PeriodicalIF":8.3000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Science and Technology","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0266353824005943","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0

Abstract

This study provides a systematic investigation of the perforation resistance and failure mechanisms of scarf-repaired composite laminates under high-velocity impact. First, a geometric model of the scarf-repaired laminate was established based on a rate-dependent constitutive equation, with the adhesive layer modeled using the Cowper-Symonds constitutive law, both implemented in ABAQUS/Explicit. Second, model parameters were calibrated using experimental data from the literature, and the numerical predictions aligned well with the experimental results, validating the model's accuracy in predicting the laminate response under high-velocity impact. Finally, various impact conditions, including impact velocity (angle and speed), locations and different scarf angles, were simulated to systematically analyze the impact resistance and failure modes of the repaired structure. This research provides theoretical and practical insights into the design and engineering applications of damage repair in composite structures.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Composites Science and Technology
Composites Science and Technology 工程技术-材料科学:复合
CiteScore
16.20
自引率
9.90%
发文量
611
审稿时长
33 days
期刊介绍: Composites Science and Technology publishes refereed original articles on the fundamental and applied science of engineering composites. The focus of this journal is on polymeric matrix composites with reinforcements/fillers ranging from nano- to macro-scale. CSTE encourages manuscripts reporting unique, innovative contributions to the physics, chemistry, materials science and applied mechanics aspects of advanced composites. Besides traditional fiber reinforced composites, novel composites with significant potential for engineering applications are encouraged.
期刊最新文献
Preparation and properties of thermally conductive and recyclable damping rubbers filled with lignin-graphene hybrid filler Electrical and thermal conductive composites with thermal management and electromagnetic shielding enhanced by 3D network Multifunctional meta-absorber based on CB-PLA composite and magnetic materials for electromagnetic absorption and load-bearing capacity Highly thermally conductive PEEK-based bi-selective radiative cooling composites with isolated structure for outdoor thermal management Machine learning-driven property predictions of polypropylene composites using IR spectroscopy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1