Haoqiang Lei , Yipeng Liu , Jing Li , Junyuan Chen , Liji Chen , Ying Liu , Hongsheng Liu , Wenqiang Li , Zhuofei Jiang , Zhidong Li , Xiaohua Su
{"title":"Colon-targeted dual-coating MOF nanoparticles for the delivery of curcumin with anti-inflammatory properties in the treatment of ulcerative colitis","authors":"Haoqiang Lei , Yipeng Liu , Jing Li , Junyuan Chen , Liji Chen , Ying Liu , Hongsheng Liu , Wenqiang Li , Zhuofei Jiang , Zhidong Li , Xiaohua Su","doi":"10.1016/j.colsurfb.2025.114545","DOIUrl":null,"url":null,"abstract":"<div><div>The inflammatory response is the core mechanism of the pathogenesis and symptoms of ulcerative colitis (UC), and inhibiting inflammation is a promising therapeutic approach to improving UC. Curcumin is considered a potential treatment for UC due to its significant anti-inflammatory and antioxidant effects. However, its bioavailability in the post-oral administration is limited. Therefore, the stability, sustained release, and colon targeting of curcumin in the treatment of UC have become a challenge. Herein, curcumin was efficiently filled in the porous structure of University of Oslo 66 (UiO-66). Amino-functionalized UiO-66 (MOF) was bound to hyaluronic acid (HA) via chemical crosslinking and electrostatic interactions. Polydopamine (PDA) layer was then applied to form Cur@MOF@HA-PDA NPs for colon targeting for UC treatment. Cur@MOF@HA-PDA NPs not only enhanced the stability of curcumin but also possessed acid resistance and reactive oxygen species (ROS) responsive properties, enabling it to be effectively delivered to the UC lesion site for curcumin release after oral administration, thereby enhancing the therapeutic effect. <em>In vitro</em> studies revealed that Cur@MOF@HA-PDA NPs possessed the ability to eliminate intracellular ROS, inhibit inflammatory (M1) polarization, and promote anti-inflammatory (M2) polarization. Additionally, <em>in vivo</em> experiments demonstrated that Cur@MOF@HA-PDA NPs could effectively alleviate the intestinal inflammatory symptoms of UC mice, promoting intestinal tissue repair. Furthermore, it was also confirmed that Cur@MOF@HA-PDA NPs achieved the treatment of UC by inhibiting inflammatory responses, modulating intestinal immune functions, and promoting the polarization of M2 macrophages. In short, Cur@MOF@HA-PDA NPs, as colon-targeted drug delivery nanosystems, offer a promising therapeutic strategy for the treatment of UC.</div></div>","PeriodicalId":279,"journal":{"name":"Colloids and Surfaces B: Biointerfaces","volume":"250 ","pages":"Article 114545"},"PeriodicalIF":5.4000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Colloids and Surfaces B: Biointerfaces","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927776525000529","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
The inflammatory response is the core mechanism of the pathogenesis and symptoms of ulcerative colitis (UC), and inhibiting inflammation is a promising therapeutic approach to improving UC. Curcumin is considered a potential treatment for UC due to its significant anti-inflammatory and antioxidant effects. However, its bioavailability in the post-oral administration is limited. Therefore, the stability, sustained release, and colon targeting of curcumin in the treatment of UC have become a challenge. Herein, curcumin was efficiently filled in the porous structure of University of Oslo 66 (UiO-66). Amino-functionalized UiO-66 (MOF) was bound to hyaluronic acid (HA) via chemical crosslinking and electrostatic interactions. Polydopamine (PDA) layer was then applied to form Cur@MOF@HA-PDA NPs for colon targeting for UC treatment. Cur@MOF@HA-PDA NPs not only enhanced the stability of curcumin but also possessed acid resistance and reactive oxygen species (ROS) responsive properties, enabling it to be effectively delivered to the UC lesion site for curcumin release after oral administration, thereby enhancing the therapeutic effect. In vitro studies revealed that Cur@MOF@HA-PDA NPs possessed the ability to eliminate intracellular ROS, inhibit inflammatory (M1) polarization, and promote anti-inflammatory (M2) polarization. Additionally, in vivo experiments demonstrated that Cur@MOF@HA-PDA NPs could effectively alleviate the intestinal inflammatory symptoms of UC mice, promoting intestinal tissue repair. Furthermore, it was also confirmed that Cur@MOF@HA-PDA NPs achieved the treatment of UC by inhibiting inflammatory responses, modulating intestinal immune functions, and promoting the polarization of M2 macrophages. In short, Cur@MOF@HA-PDA NPs, as colon-targeted drug delivery nanosystems, offer a promising therapeutic strategy for the treatment of UC.
期刊介绍:
Colloids and Surfaces B: Biointerfaces is an international journal devoted to fundamental and applied research on colloid and interfacial phenomena in relation to systems of biological origin, having particular relevance to the medical, pharmaceutical, biotechnological, food and cosmetic fields.
Submissions that: (1) deal solely with biological phenomena and do not describe the physico-chemical or colloid-chemical background and/or mechanism of the phenomena, and (2) deal solely with colloid/interfacial phenomena and do not have appropriate biological content or relevance, are outside the scope of the journal and will not be considered for publication.
The journal publishes regular research papers, reviews, short communications and invited perspective articles, called BioInterface Perspectives. The BioInterface Perspective provide researchers the opportunity to review their own work, as well as provide insight into the work of others that inspired and influenced the author. Regular articles should have a maximum total length of 6,000 words. In addition, a (combined) maximum of 8 normal-sized figures and/or tables is allowed (so for instance 3 tables and 5 figures). For multiple-panel figures each set of two panels equates to one figure. Short communications should not exceed half of the above. It is required to give on the article cover page a short statistical summary of the article listing the total number of words and tables/figures.