{"title":"Nonlinear dynamics of a simplified subcritical thermoacoustic system under axial structure vibration","authors":"Jiaqi Huang , Xinyan Li , Hao Zhang , Geng Chen","doi":"10.1016/j.applthermaleng.2025.125735","DOIUrl":null,"url":null,"abstract":"<div><div>Energy conversion from heat to acoustics remains one of the major challenges in high-performance propulsion systems, due to the incurred serious threat to the structural safety of engine and the reliability of system operation. In this paper, the influence of axial structural vibration on the nonlinear dynamics of a subcritical thermoacoustic system are investigated using large eddy simulation and moving mesh techniques. Multiple analysis methods, including time series analysis, reconstructed phase portrait, spectrum analysis, and wavelet analysis are employed to analyze the system response. When the thermoacoustic system is configured in the globally stable region, the acoustic oscillations grow monotonically with the increase of structure vibration, and resonant conditions lead to more severe thermoacoustic oscillations compared to non-resonant cases. In the hysteresis region, the structure vibration can trigger the silent thermoacoustic system to exhibit intense oscillations, and the minimum vibration amplitude for the triggering is obtained at different operating condition. Under non-resonant conditions, low-frequency vibrations need lower amplitude to trigger than high-frequency vibrations. Once the system becomes unstable, external structural vibrations exert a modulating effect on the high-amplitude limit cycle oscillations. These findings offer valuable insights into the interplay between axial structural vibration and thermoacoustic instability in thermoacoustic systems.</div></div>","PeriodicalId":8201,"journal":{"name":"Applied Thermal Engineering","volume":"266 ","pages":"Article 125735"},"PeriodicalIF":6.1000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Thermal Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359431125003266","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Energy conversion from heat to acoustics remains one of the major challenges in high-performance propulsion systems, due to the incurred serious threat to the structural safety of engine and the reliability of system operation. In this paper, the influence of axial structural vibration on the nonlinear dynamics of a subcritical thermoacoustic system are investigated using large eddy simulation and moving mesh techniques. Multiple analysis methods, including time series analysis, reconstructed phase portrait, spectrum analysis, and wavelet analysis are employed to analyze the system response. When the thermoacoustic system is configured in the globally stable region, the acoustic oscillations grow monotonically with the increase of structure vibration, and resonant conditions lead to more severe thermoacoustic oscillations compared to non-resonant cases. In the hysteresis region, the structure vibration can trigger the silent thermoacoustic system to exhibit intense oscillations, and the minimum vibration amplitude for the triggering is obtained at different operating condition. Under non-resonant conditions, low-frequency vibrations need lower amplitude to trigger than high-frequency vibrations. Once the system becomes unstable, external structural vibrations exert a modulating effect on the high-amplitude limit cycle oscillations. These findings offer valuable insights into the interplay between axial structural vibration and thermoacoustic instability in thermoacoustic systems.
期刊介绍:
Applied Thermal Engineering disseminates novel research related to the design, development and demonstration of components, devices, equipment, technologies and systems involving thermal processes for the production, storage, utilization and conservation of energy, with a focus on engineering application.
The journal publishes high-quality and high-impact Original Research Articles, Review Articles, Short Communications and Letters to the Editor on cutting-edge innovations in research, and recent advances or issues of interest to the thermal engineering community.