{"title":"Monochromatic cycles in 2-edge-colored bipartite graphs with large minimum degree","authors":"Yiran Zhang , Yuejian Peng","doi":"10.1016/j.disc.2024.114363","DOIUrl":null,"url":null,"abstract":"<div><div>For graphs <em>G</em>, <span><math><msub><mrow><mi>G</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>G</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>, we write <span><math><mi>G</mi><mo>⟼</mo><mo>(</mo><msub><mrow><mi>G</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>G</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span> if any red-blue edge coloring of <em>G</em> yields a red <span><math><msub><mrow><mi>G</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> or a blue <span><math><msub><mrow><mi>G</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>. The <em>Ramsey number</em> <span><math><mi>r</mi><mo>(</mo><msub><mrow><mi>G</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>G</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span> is the minimum number <em>n</em> such that the complete graph <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>⟼</mo><mo>(</mo><msub><mrow><mi>G</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>G</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span>. There is an interesting phenomenon that for some graphs <span><math><msub><mrow><mi>G</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>G</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> there is a number <span><math><mn>0</mn><mo><</mo><mi>c</mi><mo><</mo><mn>1</mn></math></span> such that for any graph <em>G</em> of order <span><math><mi>r</mi><mo>(</mo><msub><mrow><mi>G</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>G</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span> with minimum degree <span><math><mi>δ</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>></mo><mi>c</mi><mo>|</mo><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>|</mo></math></span>, <span><math><mi>G</mi><mo>⟼</mo><mo>(</mo><msub><mrow><mi>G</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>G</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span>. When we focus on bipartite graphs, the <em>bipartite Ramsey number</em> <span><math><mi>b</mi><mi>r</mi><mo>(</mo><msub><mrow><mi>G</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>G</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span> is the minimum number <em>n</em> such that the complete bipartite graph <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>n</mi></mrow></msub><mo>⟼</mo><mo>(</mo><msub><mrow><mi>G</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>G</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span>. Previous known related results on cycles are on the diagonal case (<span><math><msub><mrow><mi>G</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>=</mo><msub><mrow><mi>G</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>=</mo><msub><mrow><mi>C</mi></mrow><mrow><mn>2</mn><mi>n</mi></mrow></msub></math></span>). In this paper, we obtain an asymptotically tight bound for all off-diagonal cases, namely, we determine an asymptotically tight bound on the minimum degree of a balanced bipartite graph <em>G</em> with order <span><math><mi>b</mi><mi>r</mi><mo>(</mo><msub><mrow><mi>C</mi></mrow><mrow><mn>2</mn><mi>m</mi></mrow></msub><mo>,</mo><msub><mrow><mi>C</mi></mrow><mrow><mn>2</mn><mi>n</mi></mrow></msub><mo>)</mo></math></span> in each part such that <span><math><mi>G</mi><mo>⟼</mo><mo>(</mo><msub><mrow><mi>C</mi></mrow><mrow><mn>2</mn><mi>m</mi></mrow></msub><mo>,</mo><msub><mrow><mi>C</mi></mrow><mrow><mn>2</mn><mi>n</mi></mrow></msub><mo>)</mo></math></span>. We show that for every <span><math><mi>η</mi><mo>></mo><mn>0</mn></math></span>, there is an integer <span><math><msub><mrow><mi>N</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>></mo><mn>0</mn></math></span> such that for any <span><math><mi>N</mi><mo>></mo><msub><mrow><mi>N</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> the following holds: Let <span><math><msub><mrow><mi>α</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>></mo><msub><mrow><mi>α</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>></mo><mn>0</mn></math></span> such that <span><math><msub><mrow><mi>α</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>+</mo><msub><mrow><mi>α</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>=</mo><mn>1</mn></math></span>. Let <span><math><mi>G</mi><mo>[</mo><mi>X</mi><mo>,</mo><mi>Y</mi><mo>]</mo></math></span> be a balanced bipartite graph on <span><math><mn>2</mn><mo>(</mo><mi>N</mi><mo>−</mo><mn>1</mn><mo>)</mo></math></span> vertices with minimum degree <span><math><mi>δ</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>≥</mo><mo>(</mo><mfrac><mrow><mn>3</mn></mrow><mrow><mn>4</mn></mrow></mfrac><mo>+</mo><mn>3</mn><mi>η</mi><mo>)</mo><mo>(</mo><mi>N</mi><mo>−</mo><mn>1</mn><mo>)</mo></math></span>. Then for any red-blue edge coloring of <em>G</em>, either there exist red even cycles of each length in <span><math><mo>{</mo><mn>4</mn><mo>,</mo><mn>6</mn><mo>,</mo><mn>8</mn><mo>,</mo><mo>…</mo><mo>,</mo><mo>(</mo><mn>2</mn><mo>−</mo><mn>3</mn><msup><mrow><mi>η</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo><msub><mrow><mi>α</mi></mrow><mrow><mn>1</mn></mrow></msub><mi>N</mi><mo>}</mo></math></span>, or there exist blue even cycles of each length in <span><math><mo>{</mo><mn>4</mn><mo>,</mo><mn>6</mn><mo>,</mo><mn>8</mn><mo>,</mo><mo>…</mo><mo>,</mo><mo>(</mo><mn>2</mn><mo>−</mo><mn>3</mn><msup><mrow><mi>η</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo><msub><mrow><mi>α</mi></mrow><mrow><mn>2</mn></mrow></msub><mi>N</mi><mo>}</mo></math></span>. A construction is given to show that the bound <span><math><mi>δ</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>≥</mo><mo>(</mo><mfrac><mrow><mn>3</mn></mrow><mrow><mn>4</mn></mrow></mfrac><mo>+</mo><mn>3</mn><mi>η</mi><mo>)</mo><mo>(</mo><mi>N</mi><mo>−</mo><mn>1</mn><mo>)</mo></math></span> is asymptotically tight. Furthermore, we give a stability result.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 4","pages":"Article 114363"},"PeriodicalIF":0.7000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012365X24004941","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
For graphs G, and , we write if any red-blue edge coloring of G yields a red or a blue . The Ramsey number is the minimum number n such that the complete graph . There is an interesting phenomenon that for some graphs and there is a number such that for any graph G of order with minimum degree , . When we focus on bipartite graphs, the bipartite Ramsey number is the minimum number n such that the complete bipartite graph . Previous known related results on cycles are on the diagonal case (). In this paper, we obtain an asymptotically tight bound for all off-diagonal cases, namely, we determine an asymptotically tight bound on the minimum degree of a balanced bipartite graph G with order in each part such that . We show that for every , there is an integer such that for any the following holds: Let such that . Let be a balanced bipartite graph on vertices with minimum degree . Then for any red-blue edge coloring of G, either there exist red even cycles of each length in , or there exist blue even cycles of each length in . A construction is given to show that the bound is asymptotically tight. Furthermore, we give a stability result.
期刊介绍:
Discrete Mathematics provides a common forum for significant research in many areas of discrete mathematics and combinatorics. Among the fields covered by Discrete Mathematics are graph and hypergraph theory, enumeration, coding theory, block designs, the combinatorics of partially ordered sets, extremal set theory, matroid theory, algebraic combinatorics, discrete geometry, matrices, and discrete probability theory.
Items in the journal include research articles (Contributions or Notes, depending on length) and survey/expository articles (Perspectives). Efforts are made to process the submission of Notes (short articles) quickly. The Perspectives section features expository articles accessible to a broad audience that cast new light or present unifying points of view on well-known or insufficiently-known topics.