Pub Date : 2025-12-11DOI: 10.1016/j.disc.2025.114924
Sara Davies , Peter Gill , Daniel Horsley
For positive integers and n, the Zarankiewicz number is the maximum number of edges in a subgraph of that has no complete bipartite subgraph containing s vertices in the part of size m and t vertices in the part of size n. The best general upper bound on Zarankiewicz numbers is a bound due to Roman that can be viewed as the optimal value of a simple linear program. Here we show that in many cases this bound can be improved by adding additional constraints to this linear program. This allows us to prove new upper bounds on Zarankiewicz numbers for many small parameter sets. We are also able to establish a new family of closed form upper bounds on that captures much, but not all, of the power of the new constraints. This bound generalises a recent result of Chen, Horsley and Mammoliti that applied only in the case .
{"title":"Improved upper bounds on Zarankiewicz numbers","authors":"Sara Davies , Peter Gill , Daniel Horsley","doi":"10.1016/j.disc.2025.114924","DOIUrl":"10.1016/j.disc.2025.114924","url":null,"abstract":"<div><div>For positive integers <span><math><mi>s</mi><mo>,</mo><mi>t</mi><mo>,</mo><mi>m</mi></math></span> and <em>n</em>, the Zarankiewicz number <span><math><mi>z</mi><mo>(</mo><mi>m</mi><mo>,</mo><mi>n</mi><mo>;</mo><mi>s</mi><mo>,</mo><mi>t</mi><mo>)</mo></math></span> is the maximum number of edges in a subgraph of <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>m</mi><mo>,</mo><mi>n</mi></mrow></msub></math></span> that has no complete bipartite subgraph containing <em>s</em> vertices in the part of size <em>m</em> and <em>t</em> vertices in the part of size <em>n</em>. The best general upper bound on Zarankiewicz numbers is a bound due to Roman that can be viewed as the optimal value of a simple linear program. Here we show that in many cases this bound can be improved by adding additional constraints to this linear program. This allows us to prove new upper bounds on Zarankiewicz numbers for many small parameter sets. We are also able to establish a new family of closed form upper bounds on <span><math><mi>z</mi><mo>(</mo><mi>m</mi><mo>,</mo><mi>n</mi><mo>;</mo><mi>s</mi><mo>,</mo><mi>t</mi><mo>)</mo></math></span> that captures much, but not all, of the power of the new constraints. This bound generalises a recent result of Chen, Horsley and Mammoliti that applied only in the case <span><math><mi>s</mi><mo>=</mo><mn>2</mn></math></span>.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"349 5","pages":"Article 114924"},"PeriodicalIF":0.7,"publicationDate":"2025-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145749336","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-12-11DOI: 10.1016/j.disc.2025.114944
Yibo Li , Fengming Dong , Xiaolan Hu , Huiqing Liu
For a connected graph G, a spanning tree T of G is called a homeomorphically irreducible spanning tree (HIST) if T has no vertices of degree 2. In this paper, we show that if G is a graph of order and holds for every pair of non-adjacent vertices u and v in G, then G has a HIST, unless G belongs to three exceptional families of graphs or G has a cut-vertex of degree 2. This result improves the latest conclusion, due to Ito and Tsuchiya, that the existence of a HIST in G can be guaranteed if holds for every pair of non-adjacent vertices u and v in G.
对于连通图G,如果T没有2次顶点,则G的生成树T称为同胚不可约生成树(HIST)。在本文中,我们证明了如果G是一个阶n≥270且| n (u)∪n (v)|≥n−12的图,对于G中每一对不相邻的顶点u和v都成立,那么G有一个HIST,除非G属于三个例外的图族或G有一个2次的切顶点。该结果改进了Ito和Tsuchiya的最新结论,即对于G中的每一对非相邻顶点u和v,如果d(u)+d(v)≥n−1成立,则G中存在HIST。
{"title":"A neighborhood union condition for the existence of a spanning tree without degree 2 vertices","authors":"Yibo Li , Fengming Dong , Xiaolan Hu , Huiqing Liu","doi":"10.1016/j.disc.2025.114944","DOIUrl":"10.1016/j.disc.2025.114944","url":null,"abstract":"<div><div>For a connected graph <em>G</em>, a spanning tree <em>T</em> of <em>G</em> is called a homeomorphically irreducible spanning tree (HIST) if <em>T</em> has no vertices of degree 2. In this paper, we show that if <em>G</em> is a graph of order <span><math><mi>n</mi><mo>≥</mo><mn>270</mn></math></span> and <span><math><mo>|</mo><mi>N</mi><mo>(</mo><mi>u</mi><mo>)</mo><mo>∪</mo><mi>N</mi><mo>(</mo><mi>v</mi><mo>)</mo><mo>|</mo><mo>≥</mo><mfrac><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></math></span> holds for every pair of non-adjacent vertices <em>u</em> and <em>v</em> in <em>G</em>, then <em>G</em> has a HIST, unless <em>G</em> belongs to three exceptional families of graphs or <em>G</em> has a cut-vertex of degree 2. This result improves the latest conclusion, due to Ito and Tsuchiya, that the existence of a HIST in <em>G</em> can be guaranteed if <span><math><mi>d</mi><mo>(</mo><mi>u</mi><mo>)</mo><mo>+</mo><mi>d</mi><mo>(</mo><mi>v</mi><mo>)</mo><mo>≥</mo><mi>n</mi><mo>−</mo><mn>1</mn></math></span> holds for every pair of non-adjacent vertices <em>u</em> and <em>v</em> in <em>G</em>.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"349 5","pages":"Article 114944"},"PeriodicalIF":0.7,"publicationDate":"2025-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145749337","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-12-11DOI: 10.1016/j.disc.2025.114942
Cristian M. Conde , Ezequiel Dratman , Luciano N. Grippo
A signed graph is one that features two types of edges: positive and negative. Balanced signed graphs are those in which all cycles contain an even number of negative edges. In the adjacency matrix of a signed graph, entries can be 0, −1, or 1, depending on whether ij represents no edge, a negative edge, or a positive edge, respectively. The index of the adjacency matrix of a signed graph is less or equal to the index of the adjacency matrix of its underlying graph G, i.e., . Indeed, if is balanced, then . This inequality becomes strict when is an unbalanced signed graph. Recently, Brunetti and Stanić found the whole list of unbalanced signed graphs on n vertices with maximum (resp. minimum) spectral radius. To our knowledge, there has been little research on this problem when unbalanced signed graphs are confined to specific graph classes. In this article, we demonstrate that there is only one unbalanced signed bipartite graph on n vertices with maximum spectral radius, up to an operation on the signed edges known as switching. Additionally, we investigate unbalanced signed complete bipartite graphs on n vertices with a bounded number of edges and maximum spectral radius, where the negative edges induce a tree.
{"title":"On the spectral radius of unbalanced signed bipartite graphs","authors":"Cristian M. Conde , Ezequiel Dratman , Luciano N. Grippo","doi":"10.1016/j.disc.2025.114942","DOIUrl":"10.1016/j.disc.2025.114942","url":null,"abstract":"<div><div>A signed graph is one that features two types of edges: positive and negative. Balanced signed graphs are those in which all cycles contain an even number of negative edges. In the adjacency matrix of a signed graph, entries can be 0, −1, or 1, depending on whether <em>ij</em> represents no edge, a negative edge, or a positive edge, respectively. The index of the adjacency matrix of a signed graph <span><math><mover><mrow><mi>G</mi></mrow><mrow><mo>˙</mo></mrow></mover></math></span> is less or equal to the index of the adjacency matrix of its underlying graph <em>G</em>, i.e., <span><math><msub><mrow><mi>λ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><mover><mrow><mi>G</mi></mrow><mrow><mo>˙</mo></mrow></mover><mo>)</mo><mo>≤</mo><msub><mrow><mi>λ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span>. Indeed, if <span><math><mover><mrow><mi>G</mi></mrow><mrow><mo>˙</mo></mrow></mover></math></span> is balanced, then <span><math><msub><mrow><mi>λ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><mover><mrow><mi>G</mi></mrow><mrow><mo>˙</mo></mrow></mover><mo>)</mo><mo>=</mo><msub><mrow><mi>λ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span>. This inequality becomes strict when <span><math><mover><mrow><mi>G</mi></mrow><mrow><mo>˙</mo></mrow></mover></math></span> is an unbalanced signed graph. Recently, Brunetti and Stanić found the whole list of unbalanced signed graphs on <em>n</em> vertices with maximum (resp. minimum) spectral radius. To our knowledge, there has been little research on this problem when unbalanced signed graphs are confined to specific graph classes. In this article, we demonstrate that there is only one unbalanced signed bipartite graph on <em>n</em> vertices with maximum spectral radius, up to an operation on the signed edges known as switching. Additionally, we investigate unbalanced signed complete bipartite graphs on <em>n</em> vertices with a bounded number of edges and maximum spectral radius, where the negative edges induce a tree.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"349 5","pages":"Article 114942"},"PeriodicalIF":0.7,"publicationDate":"2025-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145749820","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-12-09DOI: 10.1016/j.disc.2025.114938
Yanbo Zhang , Yaojun Chen , Yunqing Zhang
Given two graphs G and H, the Ramsey number is the smallest positive integer r such that every graph on r vertices contains G as a subgraph or its complement contains H as a subgraph. Let denote a tree on n vertices, and let denote a generalized wheel, obtained by joining each vertex of the complete graph to every vertex of the cycle . For , , and sufficiently large n, Chng, Tan, and Wong (Discrete Math., 2021) conjectured that In this note, we confirm this conjecture in a stronger form by providing a linear lower bound on n in terms of m for which the equality holds.
给定两个图G和H,拉姆齐数R(G,H)是最小的正整数R,使得在R个顶点上的每个图都包含G作为子图或其补包含H作为子图。设Tn表示有n个顶点的树,设Ws,m表示一个广义轮,通过将完全图k的每个顶点与循环Cm的每个顶点连接而得到。对于s≥2,m≥2,和足够大的n, cheng, Tan, and Wong(离散数学)。, 2021)推测thatR (Tn Ws 2米)= (s + 1) (n−1)+ 1。在这篇笔记中,我们以一种更强的形式证实了这个猜想,我们用m给出了n的线性下界,在这个下界中等式成立。
{"title":"Ramsey numbers of trees versus generalized wheels","authors":"Yanbo Zhang , Yaojun Chen , Yunqing Zhang","doi":"10.1016/j.disc.2025.114938","DOIUrl":"10.1016/j.disc.2025.114938","url":null,"abstract":"<div><div>Given two graphs <em>G</em> and <em>H</em>, the Ramsey number <span><math><mi>R</mi><mo>(</mo><mi>G</mi><mo>,</mo><mi>H</mi><mo>)</mo></math></span> is the smallest positive integer <em>r</em> such that every graph on <em>r</em> vertices contains <em>G</em> as a subgraph or its complement contains <em>H</em> as a subgraph. Let <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> denote a tree on <em>n</em> vertices, and let <span><math><msub><mrow><mi>W</mi></mrow><mrow><mi>s</mi><mo>,</mo><mi>m</mi></mrow></msub></math></span> denote a generalized wheel, obtained by joining each vertex of the complete graph <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>s</mi></mrow></msub></math></span> to every vertex of the cycle <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>m</mi></mrow></msub></math></span>. For <span><math><mi>s</mi><mo>≥</mo><mn>2</mn></math></span>, <span><math><mi>m</mi><mo>≥</mo><mn>2</mn></math></span>, and sufficiently large <em>n</em>, Chng, Tan, and Wong (<em>Discrete Math.</em>, 2021) conjectured that<span><span><span><math><mi>R</mi><mo>(</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>,</mo><msub><mrow><mi>W</mi></mrow><mrow><mi>s</mi><mo>,</mo><mn>2</mn><mi>m</mi></mrow></msub><mo>)</mo><mo>=</mo><mo>(</mo><mi>s</mi><mo>+</mo><mn>1</mn><mo>)</mo><mo>(</mo><mi>n</mi><mo>−</mo><mn>1</mn><mo>)</mo><mo>+</mo><mn>1</mn><mo>.</mo></math></span></span></span> In this note, we confirm this conjecture in a stronger form by providing a linear lower bound on <em>n</em> in terms of <em>m</em> for which the equality holds.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"349 4","pages":"Article 114938"},"PeriodicalIF":0.7,"publicationDate":"2025-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145747783","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-12-09DOI: 10.1016/j.disc.2025.114912
Thomas W. Cusick , Younhwan Cheon
<div><div>Rotation symmetric (RS) Boolean functions have been extensively studied for over twenty years because of their applications in cryptography and coding theory. The present paper studies degree 3 RS functions, and relies extensively on the theory of the affine equivalence of such functions developed in <span><span>[3]</span></span>. It is known <span><span>[1]</span></span> that if <span><math><mi>f</mi><mo>(</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>x</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></math></span> is the RS Boolean function in <em>n</em> variables generated by the monomial <span><math><msub><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mo>…</mo><msub><mrow><mi>x</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> (notation <span><math><msub><mrow><mo>(</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>x</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>)</mo></mrow><mrow><mi>n</mi></mrow></msub></math></span>), then the sequence <span><math><mi>w</mi><mi>t</mi><mo>(</mo><msub><mrow><mo>(</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>x</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>)</mo></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo><mo>,</mo><mspace></mspace><mi>n</mi><mo>=</mo><mi>i</mi><mo>,</mo><mi>i</mi><mo>+</mo><mn>1</mn><mo>,</mo><mo>…</mo></math></span>, where <span><math><mi>w</mi><mi>t</mi><mo>(</mo><msub><mrow><mo>(</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>x</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>)</mo></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></math></span> denotes the Hamming weight of the function, satisfies a linear recursion with integer coefficients and this recursion can be explicitly computed with a method given in <span><span>[1]</span></span>. It was observed in <span><span>[10, Lemma 3.5, p. 396]</span></span> that the functions <span><math><msub><mrow><mo>(</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mn>4</mn><mo>)</mo></mrow><mrow><mi>n</mi></mrow></msub></math></span> and <span><math><msub><mrow><mo>(</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mn>5</mn><mo>)</mo></mrow><mrow><mi>n</mi></mrow></msub></math></span> have the same weights for every <em>n</em> even though the two functions are not affine equivalent for infinitely many values of <em>n</em>. It was not clear what the explanation for that is. This paper answers that question and gives a general theory that provides
{"title":"Recursion polynomial for cubic rotation symmetric Boolean functions","authors":"Thomas W. Cusick , Younhwan Cheon","doi":"10.1016/j.disc.2025.114912","DOIUrl":"10.1016/j.disc.2025.114912","url":null,"abstract":"<div><div>Rotation symmetric (RS) Boolean functions have been extensively studied for over twenty years because of their applications in cryptography and coding theory. The present paper studies degree 3 RS functions, and relies extensively on the theory of the affine equivalence of such functions developed in <span><span>[3]</span></span>. It is known <span><span>[1]</span></span> that if <span><math><mi>f</mi><mo>(</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>x</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></math></span> is the RS Boolean function in <em>n</em> variables generated by the monomial <span><math><msub><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mo>…</mo><msub><mrow><mi>x</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> (notation <span><math><msub><mrow><mo>(</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>x</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>)</mo></mrow><mrow><mi>n</mi></mrow></msub></math></span>), then the sequence <span><math><mi>w</mi><mi>t</mi><mo>(</mo><msub><mrow><mo>(</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>x</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>)</mo></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo><mo>,</mo><mspace></mspace><mi>n</mi><mo>=</mo><mi>i</mi><mo>,</mo><mi>i</mi><mo>+</mo><mn>1</mn><mo>,</mo><mo>…</mo></math></span>, where <span><math><mi>w</mi><mi>t</mi><mo>(</mo><msub><mrow><mo>(</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>x</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>)</mo></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></math></span> denotes the Hamming weight of the function, satisfies a linear recursion with integer coefficients and this recursion can be explicitly computed with a method given in <span><span>[1]</span></span>. It was observed in <span><span>[10, Lemma 3.5, p. 396]</span></span> that the functions <span><math><msub><mrow><mo>(</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mn>4</mn><mo>)</mo></mrow><mrow><mi>n</mi></mrow></msub></math></span> and <span><math><msub><mrow><mo>(</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mn>5</mn><mo>)</mo></mrow><mrow><mi>n</mi></mrow></msub></math></span> have the same weights for every <em>n</em> even though the two functions are not affine equivalent for infinitely many values of <em>n</em>. It was not clear what the explanation for that is. This paper answers that question and gives a general theory that provides ","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"349 5","pages":"Article 114912"},"PeriodicalIF":0.7,"publicationDate":"2025-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145749819","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-12-09DOI: 10.1016/j.disc.2025.114936
Shi-Cai Gong , Ni Yang , Jia-Jin Wang , Ya-Hong Chen
Let be the number of spanning trees of a simple graph G, and let denote the class of all n-vertex m-edge simple graphs. A graph is called t-optimal if for every . Petingi and Rodríguez (Discrete Math., 2002) proved that, for n larger than an explicit threshold , any t-optimal graph has an almost-regular complement containing the minimum possible number of induced 2-edge paths. Furthermore, they proposed a conjecture regarding graphs having the minimum number of induced paths of length two within .
We confirm the conjecture above for all regularity degrees . As a by-product, the t-optimal members of and are completely determined for all , where the threshold can be explicitly determined.
{"title":"On a conjecture of regular graphs having the minimum number of induced paths of length two","authors":"Shi-Cai Gong , Ni Yang , Jia-Jin Wang , Ya-Hong Chen","doi":"10.1016/j.disc.2025.114936","DOIUrl":"10.1016/j.disc.2025.114936","url":null,"abstract":"<div><div>Let <span><math><mi>t</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> be the number of spanning trees of a simple graph <em>G</em>, and let <span><math><mi>Γ</mi><mo>(</mo><mi>n</mi><mo>,</mo><mi>m</mi><mo>)</mo></math></span> denote the class of all <em>n</em>-vertex <em>m</em>-edge simple graphs. A graph <span><math><mi>G</mi><mo>∈</mo><mi>Γ</mi><mo>(</mo><mi>n</mi><mo>,</mo><mi>m</mi><mo>)</mo></math></span> is called <em>t-optimal</em> if <span><math><mi>t</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>≥</mo><mi>t</mi><mo>(</mo><mi>H</mi><mo>)</mo></math></span> for every <span><math><mi>H</mi><mo>∈</mo><mi>Γ</mi><mo>(</mo><mi>n</mi><mo>,</mo><mi>m</mi><mo>)</mo></math></span>. Petingi and Rodríguez (Discrete Math., 2002) proved that, for <em>n</em> larger than an explicit threshold <span><math><msub><mrow><mi>n</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>, any <em>t</em>-optimal graph has an almost-regular complement containing the minimum possible number of induced 2-edge paths. Furthermore, they proposed a conjecture regarding graphs having the minimum number of induced paths of length two within <span><math><mi>Γ</mi><mo>(</mo><mi>n</mi><mo>;</mo><mi>m</mi><mo>)</mo></math></span>.</div><div>We confirm the conjecture above for all regularity degrees <span><math><mi>k</mi><mo>∈</mo><mo>{</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mn>3</mn><mo>,</mo><mn>4</mn><mo>,</mo><mn>5</mn><mo>}</mo></math></span>. As a by-product, the <em>t</em>-optimal members of <span><math><mi>Γ</mi><mo>(</mo><mi>n</mi><mo>,</mo><mi>n</mi><mo>(</mo><mi>n</mi><mo>−</mo><mn>5</mn><mo>)</mo><mo>/</mo><mn>2</mn><mo>)</mo></math></span> and <span><math><mi>Γ</mi><mo>(</mo><mi>n</mi><mo>,</mo><mi>n</mi><mo>(</mo><mi>n</mi><mo>−</mo><mn>6</mn><mo>)</mo><mo>/</mo><mn>2</mn><mo>)</mo></math></span> are completely determined for all <span><math><mi>n</mi><mo>></mo><msub><mrow><mi>n</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>, where the threshold <span><math><msub><mrow><mi>n</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> can be explicitly determined.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"349 4","pages":"Article 114936"},"PeriodicalIF":0.7,"publicationDate":"2025-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145746958","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-12-09DOI: 10.1016/j.disc.2025.114922
Vinayak Gupta
Let T be a tree with p pendant vertices, and let denote the multiplicity of the eigenvalue λ of the Laplacian matrix (T). It has recently been shown that if and only if T has p pendant vertices and the distance between any two distinct pendant vertices u and v satisfies . This article provides a complete characterization of all trees T for which .
{"title":"Trees with one as Laplacian eigenvalue with multiplicity two less than the number of pendant vertices","authors":"Vinayak Gupta","doi":"10.1016/j.disc.2025.114922","DOIUrl":"10.1016/j.disc.2025.114922","url":null,"abstract":"<div><div>Let <em>T</em> be a tree with <em>p</em> pendant vertices, and let <span><math><mi>m</mi><mo>(</mo><mi>T</mi><mo>,</mo><mi>λ</mi><mo>)</mo></math></span> denote the multiplicity of the eigenvalue <em>λ</em> of the Laplacian matrix (<em>T</em>). It has recently been shown that <span><math><mi>m</mi><mo>(</mo><mi>T</mi><mo>,</mo><mn>1</mn><mo>)</mo><mo>=</mo><mi>p</mi><mo>−</mo><mn>1</mn></math></span> if and only if <em>T</em> has <em>p</em> pendant vertices and the distance between any two distinct pendant vertices <em>u</em> and <em>v</em> satisfies <span><math><mi>d</mi><mo>(</mo><mi>u</mi><mo>,</mo><mi>v</mi><mo>)</mo><mo>≡</mo><mn>2</mn><mspace></mspace><mspace></mspace><mrow><mi>mod</mi></mrow><mspace></mspace><mn>3</mn></math></span>. This article provides a complete characterization of all trees <em>T</em> for which <span><math><mi>m</mi><mo>(</mo><mi>T</mi><mo>,</mo><mn>1</mn><mo>)</mo><mo>=</mo><mi>p</mi><mo>−</mo><mn>2</mn></math></span>.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"349 5","pages":"Article 114922"},"PeriodicalIF":0.7,"publicationDate":"2025-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145749335","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-12-09DOI: 10.1016/j.disc.2025.114941
Jeremy Lyle
In [2], Brandt conjectured that -free graphs on n vertices with minimum degree larger than have independent sets on at least vertices. This result has been shown for , but not for larger r. In this paper, we provide a simple result that the conjecture holds for as well; that is, any -free graph with minimum degree larger than has an independent set of order at least .
{"title":"Independent sets in K6-free graphs with large degree","authors":"Jeremy Lyle","doi":"10.1016/j.disc.2025.114941","DOIUrl":"10.1016/j.disc.2025.114941","url":null,"abstract":"<div><div>In <span><span>[2]</span></span>, Brandt conjectured that <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>r</mi></mrow></msub></math></span>-free graphs on <em>n</em> vertices with minimum degree larger than <span><math><mo>(</mo><mo>(</mo><mn>5</mn><mi>r</mi><mo>−</mo><mn>11</mn><mo>)</mo><mo>/</mo><mo>(</mo><mn>5</mn><mi>r</mi><mo>−</mo><mn>5</mn><mo>)</mo><mo>)</mo><mi>n</mi></math></span> have independent sets on at least <span><math><mo>(</mo><mn>1</mn><mo>/</mo><mo>(</mo><mi>r</mi><mo>−</mo><mn>1</mn><mo>)</mo><mo>)</mo><mi>n</mi></math></span> vertices. This result has been shown for <span><math><mi>r</mi><mo>=</mo><mn>3</mn><mo>,</mo><mn>4</mn><mo>,</mo><mn>5</mn></math></span>, but not for larger <em>r</em>. In this paper, we provide a simple result that the conjecture holds for <span><math><mi>r</mi><mo>=</mo><mn>6</mn></math></span> as well; that is, any <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>6</mn></mrow></msub></math></span>-free graph with minimum degree larger than <span><math><mo>(</mo><mn>19</mn><mo>/</mo><mn>25</mn><mo>)</mo><mi>n</mi></math></span> has an independent set of order at least <span><math><mo>(</mo><mn>1</mn><mo>/</mo><mn>5</mn><mo>)</mo><mi>n</mi></math></span>.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"349 4","pages":"Article 114941"},"PeriodicalIF":0.7,"publicationDate":"2025-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145746957","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-12-09DOI: 10.1016/j.disc.2025.114940
Yanjun Li , Haibin Kan , Fangfang Liu , Jie Peng , Lijing Zheng , Zepeng Zhuo
The study on minimal linear codes has received great attention, due to their significant applications in secret sharing schemes and secure two-party computation. Until now, numerous minimal linear codes have been discovered. However, only a few infinite families of minimal linear codes were found from vectorial functions. In this paper, we present a necessary and sufficient condition such that a large class of ternary linear codes from vectorial functions is minimal and violates the AB condition simultaneously, by using the Walsh transform of vectorial functions. We also give a sufficient condition such that a large family of linear codes from vectorial functions is minimal, by using cutting blocking sets. These two results extend two main results of [22] and [7] to the case of vectorial functions, respectively. According to these two results, we find several minimal linear codes violating the AB condition, respectively.
{"title":"Minimal linear codes from vectorial functions","authors":"Yanjun Li , Haibin Kan , Fangfang Liu , Jie Peng , Lijing Zheng , Zepeng Zhuo","doi":"10.1016/j.disc.2025.114940","DOIUrl":"10.1016/j.disc.2025.114940","url":null,"abstract":"<div><div>The study on minimal linear codes has received great attention, due to their significant applications in secret sharing schemes and secure two-party computation. Until now, numerous minimal linear codes have been discovered. However, only a few infinite families of minimal linear codes were found from vectorial functions. In this paper, we present a necessary and sufficient condition such that a large class of ternary linear codes from vectorial functions is minimal and violates the AB condition simultaneously, by using the Walsh transform of vectorial functions. We also give a sufficient condition such that a large family of linear codes from vectorial functions is minimal, by using cutting blocking sets. These two results extend two main results of <span><span>[22]</span></span> and <span><span>[7]</span></span> to the case of vectorial functions, respectively. According to these two results, we find several minimal linear codes violating the AB condition, respectively.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"349 4","pages":"Article 114940"},"PeriodicalIF":0.7,"publicationDate":"2025-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145746959","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-12-08DOI: 10.1016/j.disc.2025.114914
Ruike Wang, Zhenzhen Lou
Spectral stability theorems have been a crucial aspect of graph theory research. Consider a graph G with size m and spectral radius . Building on the solid foundation laid by previous works in this rich field, this paper presents novel and valuable findings related to stability. Wang and Guo (2024) [16] showed an important result. Given that and , when , then G contains either a quadrilateral or a star of size . In this paper, we take a significant step forward by generalizing this result. Precisely, for and , when , we prove that G contains either a copy of (a complete bipartite graph with two vertices on one side and t vertices on the other side) or a star of size . This generalization contributes to a more profound understanding of the spectral and structural aspects of graphs, as well as their stability properties.
谱稳定性定理一直是图论研究的一个重要方面。考虑一个大小为m,谱半径为ρ(G)的图G。本文在前人在这一丰富领域的工作奠定的坚实基础上,提出了与稳定性有关的新颖而有价值的发现。Wang and Guo(2024)[16]给出了重要的结果。设m=Ω(k4)且k≥0,当ρ(G)≥m - k时,则G包含大小为m - k的四边形或星形。在本文中,我们通过推广这一结果向前迈出了重要的一步。准确地说,对于m=Ω(k4)和2≤t≤k+2,当ρ(G)≥m−k+t−2时,我们证明了G包含K2的一个副本,t(一侧有两个顶点,另一侧有t个顶点的完全二部图)或一个大小为m−k+t−2的星。这种推广有助于更深刻地理解图的谱和结构方面,以及它们的稳定性。
{"title":"A spectral stability result regarding the complete bipartite graph K2,t","authors":"Ruike Wang, Zhenzhen Lou","doi":"10.1016/j.disc.2025.114914","DOIUrl":"10.1016/j.disc.2025.114914","url":null,"abstract":"<div><div>Spectral stability theorems have been a crucial aspect of graph theory research. Consider a graph <em>G</em> with size <em>m</em> and spectral radius <span><math><mi>ρ</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span>. Building on the solid foundation laid by previous works in this rich field, this paper presents novel and valuable findings related to stability. Wang and Guo (2024) <span><span>[16]</span></span> showed an important result. Given that <span><math><mi>m</mi><mo>=</mo><mi>Ω</mi><mo>(</mo><msup><mrow><mi>k</mi></mrow><mrow><mn>4</mn></mrow></msup><mo>)</mo></math></span> and <span><math><mi>k</mi><mo>≥</mo><mn>0</mn></math></span>, when <span><math><mi>ρ</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>≥</mo><msqrt><mrow><mi>m</mi><mo>−</mo><mi>k</mi></mrow></msqrt></math></span>, then <em>G</em> contains either a quadrilateral or a star of size <span><math><mi>m</mi><mo>−</mo><mi>k</mi></math></span>. In this paper, we take a significant step forward by generalizing this result. Precisely, for <span><math><mi>m</mi><mo>=</mo><mi>Ω</mi><mo>(</mo><msup><mrow><mi>k</mi></mrow><mrow><mn>4</mn></mrow></msup><mo>)</mo></math></span> and <span><math><mn>2</mn><mo>≤</mo><mi>t</mi><mo>≤</mo><mi>k</mi><mo>+</mo><mn>2</mn></math></span>, when <span><math><mi>ρ</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>≥</mo><msqrt><mrow><mi>m</mi><mo>−</mo><mi>k</mi><mo>+</mo><mi>t</mi><mo>−</mo><mn>2</mn></mrow></msqrt></math></span>, we prove that <em>G</em> contains either a copy of <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>2</mn><mo>,</mo><mi>t</mi></mrow></msub></math></span> (a complete bipartite graph with two vertices on one side and <em>t</em> vertices on the other side) or a star of size <span><math><mi>m</mi><mo>−</mo><mi>k</mi><mo>+</mo><mi>t</mi><mo>−</mo><mn>2</mn></math></span>. This generalization contributes to a more profound understanding of the spectral and structural aspects of graphs, as well as their stability properties.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"349 5","pages":"Article 114914"},"PeriodicalIF":0.7,"publicationDate":"2025-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145697781","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}