Pub Date : 2024-10-31DOI: 10.1016/j.disc.2024.114305
We show that every 3-connected -free graph is Hamilton-connected, where is the graph obtained by joining two vertex-disjoint triangles with a path of length 3. This resolves one of the two last open cases in the characterization of pairs of connected forbidden subgraphs implying Hamilton-connectedness. The proof is based on a new closure technique, developed in a previous paper, and on a structural analysis of small subgraphs, cycles and paths in line graphs of multigraphs. The most technical steps of the analysis are computer-assisted.
{"title":"Every 3-connected {K1,3,Γ3}-free graph is Hamilton-connected","authors":"","doi":"10.1016/j.disc.2024.114305","DOIUrl":"10.1016/j.disc.2024.114305","url":null,"abstract":"<div><div>We show that every 3-connected <span><math><mo>{</mo><msub><mrow><mi>K</mi></mrow><mrow><mn>1</mn><mo>,</mo><mn>3</mn></mrow></msub><mo>,</mo><msub><mrow><mi>Γ</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>}</mo></math></span>-free graph is Hamilton-connected, where <span><math><msub><mrow><mi>Γ</mi></mrow><mrow><mn>3</mn></mrow></msub></math></span> is the graph obtained by joining two vertex-disjoint triangles with a path of length 3. This resolves one of the two last open cases in the characterization of pairs of connected forbidden subgraphs implying Hamilton-connectedness. The proof is based on a new closure technique, developed in a previous paper, and on a structural analysis of small subgraphs, cycles and paths in line graphs of multigraphs. The most technical steps of the analysis are computer-assisted.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142560889","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-31DOI: 10.1016/j.disc.2024.114296
We obtain a classification of completely regular codes with covering radius 1 and the second eigenvalue in the Hamming graphs up to q and intersection array. Due to the works of Meyerowitz, Mogilnykh, and Valyuzenich, our result completes the classifications of completely regular codes with covering radius 1 and the second eigenvalue in the Hamming graphs for any n and completely regular codes with covering radius 1 in .
{"title":"Completely regular codes with covering radius 1 and the second eigenvalue in 3-dimensional Hamming graphs","authors":"","doi":"10.1016/j.disc.2024.114296","DOIUrl":"10.1016/j.disc.2024.114296","url":null,"abstract":"<div><div>We obtain a classification of completely regular codes with covering radius 1 and the second eigenvalue in the Hamming graphs <span><math><mi>H</mi><mo>(</mo><mn>3</mn><mo>,</mo><mi>q</mi><mo>)</mo></math></span> up to <em>q</em> and intersection array. Due to the works of Meyerowitz, Mogilnykh, and Valyuzenich, our result completes the classifications of completely regular codes with covering radius 1 and the second eigenvalue in the Hamming graphs <span><math><mi>H</mi><mo>(</mo><mi>n</mi><mo>,</mo><mi>q</mi><mo>)</mo></math></span> for any <em>n</em> and completely regular codes with covering radius 1 in <span><math><mi>H</mi><mo>(</mo><mn>3</mn><mo>,</mo><mi>q</mi><mo>)</mo></math></span>.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142560885","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-31DOI: 10.1016/j.disc.2024.114298
The -Locally recoverable codes (LRC) studied in this work are a well-studied family of linear codes for which the value of each symbol can be recovered by a linear combination of at most r other symbols. In this paper, we study the LMD problem, which is to find the largest possible minimum distance of -LRCs, denoted by . LMD can be approximated within an additive term of one—it is known that is equal to either or , where . Moreover, for a range of parameters, it is known precisely whether the distance is or . However, the problem is still open despite a significant effort. In this work, we convert LMD to an equivalent simply-stated problem in graph theory. Using this conversion, we show that an instance of LMD is at least as hard as computing the size of a maximal graph of high girth, a hard problem in extremal graph theory. This is an evidence that LMD—although can be approximated within an additive term of one—is hard to solve in general. As a positive result, thanks to the conversion and the exiting results in extremal graph theory, we solve LMD for a range of code parameters that has not been solved before.
{"title":"On finding the largest minimum distance of locally recoverable codes: A graph theory approach","authors":"","doi":"10.1016/j.disc.2024.114298","DOIUrl":"10.1016/j.disc.2024.114298","url":null,"abstract":"<div><div>The <span><math><mo>[</mo><mi>n</mi><mo>,</mo><mi>k</mi><mo>,</mo><mi>r</mi><mo>]</mo></math></span>-Locally recoverable codes (LRC) studied in this work are a well-studied family of <span><math><mo>[</mo><mi>n</mi><mo>,</mo><mi>k</mi><mo>]</mo></math></span> linear codes for which the value of each symbol can be recovered by a linear combination of at most <em>r</em> other symbols. In this paper, we study the <em>LMD</em> problem, which is to find the largest possible minimum distance of <span><math><mo>[</mo><mi>n</mi><mo>,</mo><mi>k</mi><mo>,</mo><mi>r</mi><mo>]</mo></math></span>-LRCs, denoted by <span><math><mi>D</mi><mo>(</mo><mi>n</mi><mo>,</mo><mi>k</mi><mo>,</mo><mi>r</mi><mo>)</mo></math></span>. LMD can be approximated within an additive term of one—it is known that <span><math><mi>D</mi><mo>(</mo><mi>n</mi><mo>,</mo><mi>k</mi><mo>,</mo><mi>r</mi><mo>)</mo></math></span> is equal to either <span><math><msup><mrow><mi>d</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span> or <span><math><msup><mrow><mi>d</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>−</mo><mn>1</mn></math></span>, where <span><math><msup><mrow><mi>d</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>=</mo><mi>n</mi><mo>−</mo><mi>k</mi><mo>−</mo><mrow><mo>⌈</mo><mfrac><mrow><mi>k</mi></mrow><mrow><mi>r</mi></mrow></mfrac><mo>⌉</mo></mrow><mo>+</mo><mn>2</mn></math></span>. Moreover, for a range of parameters, it is known precisely whether the distance <span><math><mi>D</mi><mo>(</mo><mi>n</mi><mo>,</mo><mi>k</mi><mo>,</mo><mi>r</mi><mo>)</mo></math></span> is <span><math><msup><mrow><mi>d</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span> or <span><math><msup><mrow><mi>d</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>−</mo><mn>1</mn></math></span>. However, the problem is still open despite a significant effort. In this work, we convert LMD to an equivalent simply-stated problem in graph theory. Using this conversion, we show that an instance of LMD is at least as hard as computing the size of a maximal graph of high girth, a hard problem in extremal graph theory. This is an evidence that LMD—although can be approximated within an additive term of one—is hard to solve in general. As a positive result, thanks to the conversion and the exiting results in extremal graph theory, we solve LMD for a range of code parameters that has not been solved before.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142560887","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-31DOI: 10.1016/j.disc.2024.114303
<div><div>A 0-1 matrix <em>M</em> contains another 0-1 matrix <em>P</em> if some submatrix of <em>M</em> can be turned into <em>P</em> by changing any number of 1-entries to 0-entries. The 0-1 matrix <em>M</em> is <span><math><mi>P</mi></math></span>-saturated where <span><math><mi>P</mi></math></span> is a family of 0-1 matrices if <em>M</em> avoids every element of <span><math><mi>P</mi></math></span> and changing any 0-entry of <em>M</em> to a 1-entry introduces a copy of some element of <span><math><mi>P</mi></math></span>. The extremal function <span><math><mi>ex</mi><mo>(</mo><mi>n</mi><mo>,</mo><mi>P</mi><mo>)</mo></math></span> and saturation function <span><math><mi>sat</mi><mo>(</mo><mi>n</mi><mo>,</mo><mi>P</mi><mo>)</mo></math></span> are the maximum and minimum possible number of 1-entries in an <span><math><mi>n</mi><mo>×</mo><mi>n</mi></math></span> <span><math><mi>P</mi></math></span>-saturated 0-1 matrix, respectively, and the semisaturation function <span><math><mi>ssat</mi><mo>(</mo><mi>n</mi><mo>,</mo><mi>P</mi><mo>)</mo></math></span> is the minimum possible number of 1-entries in an <span><math><mi>n</mi><mo>×</mo><mi>n</mi></math></span> <span><math><mi>P</mi></math></span>-semisaturated 0-1 matrix <em>M</em>, i.e., changing any 0-entry in <em>M</em> to a 1-entry introduces a new copy of some element of <span><math><mi>P</mi></math></span>.</div><div>We study these functions of multidimensional 0-1 matrices. In particular, we give upper bounds on parameters of minimally non-<span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mi>d</mi><mo>−</mo><mn>1</mn></mrow></msup><mo>)</mo></math></span> <em>d</em>-dimensional 0-1 matrices, generalized from minimally nonlinear 0-1 matrices in two dimensions, and we show the existence of infinitely many minimally non-<span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mi>d</mi><mo>−</mo><mn>1</mn></mrow></msup><mo>)</mo></math></span> <em>d</em>-dimensional 0-1 matrices with all dimensions of length greater than 1. For any positive integers <span><math><mi>k</mi><mo>,</mo><mi>d</mi></math></span> and integer <span><math><mi>r</mi><mo>∈</mo><mo>[</mo><mn>0</mn><mo>,</mo><mi>d</mi><mo>−</mo><mn>1</mn><mo>]</mo></math></span>, we construct a family of <em>d</em>-dimensional 0-1 matrices with both extremal function and saturation function exactly <span><math><mi>k</mi><msup><mrow><mi>n</mi></mrow><mrow><mi>r</mi></mrow></msup></math></span> for sufficiently large <em>n</em>. We show that no family of <em>d</em>-dimensional 0-1 matrices has saturation function strictly between <span><math><mi>O</mi><mo>(</mo><mn>1</mn><mo>)</mo></math></span> and <span><math><mi>Θ</mi><mo>(</mo><mi>n</mi><mo>)</mo></math></span> and we construct a family of <em>d</em>-dimensional 0-1 matrices with bounded saturation function and extremal function <span><math><mi>Ω</mi><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mi>d</mi><mo>−</mo><mi>ϵ</mi></mrow></msup><mo>)</mo></math></spa
如果 M 的某个子矩阵可以通过将任意数量的 1 条目变为 0 条目而变成 P,则 0-1 矩阵 M 包含另一个 0-1 矩阵 P。如果 M 避开了 P 的每个元素,并且将 M 的任意 0 条目改为 1 条目都会引入 P 的某个元素的副本,那么 0-1 矩阵 M 就是 P 饱和的,其中 P 是 0-1 矩阵族。极值函数 ex(n,P) 和饱和函数 sat(n,P) 分别是 n×n P 饱和 0-1 矩阵中 1 条目的最大可能数目和最小可能数目,而半饱和函数 ssat(n,P) 是 n×n P 半饱和 0-1 矩阵 M 中 1 条目的最小可能数目,即、我们研究多维 0-1 矩阵的这些函数。特别是,我们给出了最小非 O(nd-1)d 维 0-1 矩阵参数的上限,这是从二维最小非线性 0-1 矩阵推广而来的;我们还证明了存在无限多的最小非 O(nd-1)d 维 0-1 矩阵,且所有维的长度都大于 1。对于任意正整数 k,d 和整数 r∈[0,d-1],我们构造了一个 d 维 0-1 矩阵族,其极值函数和饱和函数在足够大的 n 条件下正好为 knr。我们证明没有一个 d 维 0-1 矩阵族的饱和函数严格介于 O(1) 和 Θ(n) 之间,并且我们构造了一个 d 维 0-1 矩阵族,其饱和函数和极值函数 Ω(nd-ϵ) 对于任意 ϵ>0 都是有界的。对于某个整数 r∈[0,d-1],我们证明其半饱和函数总是 Θ(nr)。
{"title":"Extremal bounds for pattern avoidance in multidimensional 0-1 matrices","authors":"","doi":"10.1016/j.disc.2024.114303","DOIUrl":"10.1016/j.disc.2024.114303","url":null,"abstract":"<div><div>A 0-1 matrix <em>M</em> contains another 0-1 matrix <em>P</em> if some submatrix of <em>M</em> can be turned into <em>P</em> by changing any number of 1-entries to 0-entries. The 0-1 matrix <em>M</em> is <span><math><mi>P</mi></math></span>-saturated where <span><math><mi>P</mi></math></span> is a family of 0-1 matrices if <em>M</em> avoids every element of <span><math><mi>P</mi></math></span> and changing any 0-entry of <em>M</em> to a 1-entry introduces a copy of some element of <span><math><mi>P</mi></math></span>. The extremal function <span><math><mi>ex</mi><mo>(</mo><mi>n</mi><mo>,</mo><mi>P</mi><mo>)</mo></math></span> and saturation function <span><math><mi>sat</mi><mo>(</mo><mi>n</mi><mo>,</mo><mi>P</mi><mo>)</mo></math></span> are the maximum and minimum possible number of 1-entries in an <span><math><mi>n</mi><mo>×</mo><mi>n</mi></math></span> <span><math><mi>P</mi></math></span>-saturated 0-1 matrix, respectively, and the semisaturation function <span><math><mi>ssat</mi><mo>(</mo><mi>n</mi><mo>,</mo><mi>P</mi><mo>)</mo></math></span> is the minimum possible number of 1-entries in an <span><math><mi>n</mi><mo>×</mo><mi>n</mi></math></span> <span><math><mi>P</mi></math></span>-semisaturated 0-1 matrix <em>M</em>, i.e., changing any 0-entry in <em>M</em> to a 1-entry introduces a new copy of some element of <span><math><mi>P</mi></math></span>.</div><div>We study these functions of multidimensional 0-1 matrices. In particular, we give upper bounds on parameters of minimally non-<span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mi>d</mi><mo>−</mo><mn>1</mn></mrow></msup><mo>)</mo></math></span> <em>d</em>-dimensional 0-1 matrices, generalized from minimally nonlinear 0-1 matrices in two dimensions, and we show the existence of infinitely many minimally non-<span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mi>d</mi><mo>−</mo><mn>1</mn></mrow></msup><mo>)</mo></math></span> <em>d</em>-dimensional 0-1 matrices with all dimensions of length greater than 1. For any positive integers <span><math><mi>k</mi><mo>,</mo><mi>d</mi></math></span> and integer <span><math><mi>r</mi><mo>∈</mo><mo>[</mo><mn>0</mn><mo>,</mo><mi>d</mi><mo>−</mo><mn>1</mn><mo>]</mo></math></span>, we construct a family of <em>d</em>-dimensional 0-1 matrices with both extremal function and saturation function exactly <span><math><mi>k</mi><msup><mrow><mi>n</mi></mrow><mrow><mi>r</mi></mrow></msup></math></span> for sufficiently large <em>n</em>. We show that no family of <em>d</em>-dimensional 0-1 matrices has saturation function strictly between <span><math><mi>O</mi><mo>(</mo><mn>1</mn><mo>)</mo></math></span> and <span><math><mi>Θ</mi><mo>(</mo><mi>n</mi><mo>)</mo></math></span> and we construct a family of <em>d</em>-dimensional 0-1 matrices with bounded saturation function and extremal function <span><math><mi>Ω</mi><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mi>d</mi><mo>−</mo><mi>ϵ</mi></mrow></msup><mo>)</mo></math></spa","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142555007","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-31DOI: 10.1016/j.disc.2024.114301
A graph is said to be supereulerian if it has a spanning eulerian subgraph, i.e., a spanning connected even subgraph. A graph is called hamiltonian if it contains a spanning cycle. A graph is said to be -free if it does not contain R or S as an induced subgraph. Yang et al. characterized all pairs of connected graphs such that every supereulerian -free graph is hamiltonian. In this paper, we consider disconnected forbidden graph . We characterize all pairs of disconnected graphs such that every supereulerian -free graph of sufficiently large order is hamiltonian. Applying this result, we also characterize all forbidden pairs for the existence of a Hamiltonian cycle in 2-edge connected graphs.
如果一个图有一个跨越的优勒子图,即一个跨越的连通偶数子图,则称该图为超优勒图。如果一个图包含一个跨循环,则称为哈密顿图。如果一个图不包含 R 或 S 作为诱导子图,则称其为无{R,S}图。Yang等人描述了所有连通图R,S的特征,即每个无超循环{R,S}图都是哈密顿图。在本文中,我们考虑断开的禁止图 R,S。我们描述了所有成对的断开图 R,S 的特征,即每个阶数足够大的无超线性 {R,S} 图都是哈密顿图。应用这一结果,我们还描述了在 2 边相连图中存在哈密顿循环的所有禁止图对。
{"title":"Disconnected forbidden pairs force supereulerian graphs to be hamiltonian","authors":"","doi":"10.1016/j.disc.2024.114301","DOIUrl":"10.1016/j.disc.2024.114301","url":null,"abstract":"<div><div>A graph is said to be supereulerian if it has a spanning eulerian subgraph, i.e., a spanning connected even subgraph. A graph is called hamiltonian if it contains a spanning cycle. A graph is said to be <span><math><mo>{</mo><mi>R</mi><mo>,</mo><mi>S</mi><mo>}</mo></math></span>-free if it does not contain <em>R</em> or <em>S</em> as an induced subgraph. Yang et al. characterized all pairs of connected graphs <span><math><mi>R</mi><mo>,</mo><mi>S</mi></math></span> such that every supereulerian <span><math><mo>{</mo><mi>R</mi><mo>,</mo><mi>S</mi><mo>}</mo></math></span>-free graph is hamiltonian. In this paper, we consider disconnected forbidden graph <span><math><mi>R</mi><mo>,</mo><mi>S</mi></math></span>. We characterize all pairs of disconnected graphs <span><math><mi>R</mi><mo>,</mo><mi>S</mi></math></span> such that every supereulerian <span><math><mo>{</mo><mi>R</mi><mo>,</mo><mi>S</mi><mo>}</mo></math></span>-free graph of sufficiently large order is hamiltonian. Applying this result, we also characterize all forbidden pairs for the existence of a Hamiltonian cycle in 2-edge connected graphs.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142560886","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-31DOI: 10.1016/j.disc.2024.114304
We consider the rigidity and global rigidity of bar-joint frameworks in Euclidean d-space under additional dilation constraints in specified coordinate directions. In this setting we obtain a complete characterisation of generic rigidity. We then consider generic global rigidity. In particular, we provide an algebraic sufficient condition and a weak necessary condition. We also construct a large family of globally rigid frameworks and conjecture a combinatorial characterisation when most coordinate directions have dilation constraints.
我们考虑了欧几里得 d 空间中棒关节框架在指定坐标方向的额外扩张约束下的刚度和全局刚度。在这种情况下,我们得到了一般刚性的完整特征。然后,我们考虑一般全局刚度。特别是,我们提供了一个代数充分条件和一个弱必要条件。我们还构建了一个庞大的全局刚性框架族,并猜想了当大多数坐标方向都有扩张约束时的组合特征。
{"title":"Rigid frameworks with dilation constraints","authors":"","doi":"10.1016/j.disc.2024.114304","DOIUrl":"10.1016/j.disc.2024.114304","url":null,"abstract":"<div><div>We consider the rigidity and global rigidity of bar-joint frameworks in Euclidean <em>d</em>-space under additional dilation constraints in specified coordinate directions. In this setting we obtain a complete characterisation of generic rigidity. We then consider generic global rigidity. In particular, we provide an algebraic sufficient condition and a weak necessary condition. We also construct a large family of globally rigid frameworks and conjecture a combinatorial characterisation when most coordinate directions have dilation constraints.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142560888","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-30DOI: 10.1016/j.disc.2024.114297
In this short note, we prove that every twin-free graph on n vertices contains a locating-dominating set of size at most . This improves the earlier bound of due to Foucaud, Henning, Löwenstein and Sasse from 2016, and makes some progress towards the well-studied locating-dominating conjecture of Garijo, González and Márquez.
{"title":"A note on locating-dominating sets in twin-free graphs","authors":"","doi":"10.1016/j.disc.2024.114297","DOIUrl":"10.1016/j.disc.2024.114297","url":null,"abstract":"<div><div>In this short note, we prove that every twin-free graph on <em>n</em> vertices contains a locating-dominating set of size at most <span><math><mo>⌈</mo><mfrac><mrow><mn>5</mn></mrow><mrow><mn>8</mn></mrow></mfrac><mi>n</mi><mo>⌉</mo></math></span>. This improves the earlier bound of <span><math><mo>⌊</mo><mfrac><mrow><mn>2</mn></mrow><mrow><mn>3</mn></mrow></mfrac><mi>n</mi><mo>⌋</mo></math></span> due to Foucaud, Henning, Löwenstein and Sasse from 2016, and makes some progress towards the well-studied locating-dominating conjecture of Garijo, González and Márquez.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142554469","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-30DOI: 10.1016/j.disc.2024.114302
We classify and construct all line graphs that are 3-polytopes (planar and 3-connected). Apart from a few special cases, they are all obtained starting from the medial graphs of cubic (i.e., 3-regular) 3-polytopes, by applying two types of graph transformations. This is similar to the generation of other subclasses of 3-polytopes [6], [13].
{"title":"Generation of 3-connected, planar line graphs","authors":"","doi":"10.1016/j.disc.2024.114302","DOIUrl":"10.1016/j.disc.2024.114302","url":null,"abstract":"<div><div>We classify and construct all line graphs that are 3-polytopes (planar and 3-connected). Apart from a few special cases, they are all obtained starting from the medial graphs of cubic (i.e., 3-regular) 3-polytopes, by applying two types of graph transformations. This is similar to the generation of other subclasses of 3-polytopes <span><span>[6]</span></span>, <span><span>[13]</span></span>.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142554454","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-24DOI: 10.1016/j.disc.2024.114299
Over the last decades, a lot of research has been devoted to structural and coloring problems on plane graphs that are sparse in this or that sense.
In this note we deal with the densest among sparse 3-polytopes, namely those having no adjacent 3-cycles. Borodin (1996) proved that such 3-polytopes have a vertex of degree at most 4 and, moreover, an edge with the degree-sum of its end-vertices at most 9, where both bounds are sharp.
By denote the degree of a vertex v. An edge in a 3-polytope is an -edge if and . The well-known (3,5;4,4)-Archimedean solid corresponds to a plane quadrangulation in which every edge joins a 3-vertex with a 5-vertex.
We prove that every 3-polytope with neither adjacent 3-cycles nor -edges has a 3-face with the degree-sum of its incident vertices (weight) at most 16, which bound is sharp.
{"title":"Light 3-faces in 3-polytopes without adjacent triangles","authors":"","doi":"10.1016/j.disc.2024.114299","DOIUrl":"10.1016/j.disc.2024.114299","url":null,"abstract":"<div><div>Over the last decades, a lot of research has been devoted to structural and coloring problems on plane graphs that are sparse in this or that sense.</div><div>In this note we deal with the densest among sparse 3-polytopes, namely those having no adjacent 3-cycles. Borodin (1996) proved that such 3-polytopes have a vertex of degree at most 4 and, moreover, an edge with the degree-sum of its end-vertices at most 9, where both bounds are sharp.</div><div>By <span><math><mi>d</mi><mo>(</mo><mi>v</mi><mo>)</mo></math></span> denote the degree of a vertex <em>v</em>. An edge <span><math><mi>e</mi><mo>=</mo><mi>x</mi><mi>y</mi></math></span> in a 3-polytope is an <span><math><mo>(</mo><mi>i</mi><mo>,</mo><mi>j</mi><mo>)</mo></math></span>-edge if <span><math><mi>d</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>≤</mo><mi>i</mi></math></span> and <span><math><mi>d</mi><mo>(</mo><mi>y</mi><mo>)</mo><mo>≤</mo><mi>j</mi></math></span>. The well-known (3,5;4,4)-Archimedean solid corresponds to a plane quadrangulation in which every edge joins a 3-vertex with a 5-vertex.</div><div>We prove that every 3-polytope with neither adjacent 3-cycles nor <span><math><mo>(</mo><mn>3</mn><mo>,</mo><mn>5</mn><mo>)</mo></math></span>-edges has a 3-face with the degree-sum of its incident vertices (weight) at most 16, which bound is sharp.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142529640","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-24DOI: 10.1016/j.disc.2024.114300
The multiple complete split-like graph is the join of an empty graph and s copies of complete graph . In this article, we obtain the formulas for the number of spanning trees of containing a given spanning forest when and 2. Particularly, when , our result derives the number of spanning trees of complete split graph containing a given spanning forest, thereby extending Moon's result [19].
{"title":"Counting spanning trees of multiple complete split-like graph containing a given spanning forest","authors":"","doi":"10.1016/j.disc.2024.114300","DOIUrl":"10.1016/j.disc.2024.114300","url":null,"abstract":"<div><div>The multiple complete split-like graph <span><math><mi>M</mi><mi>C</mi><msubsup><mrow><mi>S</mi></mrow><mrow><mi>b</mi><mo>,</mo><mi>s</mi></mrow><mrow><mi>a</mi></mrow></msubsup></math></span> is the join of an empty graph <span><math><msub><mrow><mover><mrow><mi>K</mi></mrow><mo>‾</mo></mover></mrow><mrow><mi>a</mi></mrow></msub></math></span> and <em>s</em> copies of complete graph <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>b</mi></mrow></msub></math></span>. In this article, we obtain the formulas for the number of spanning trees of <span><math><mi>M</mi><mi>C</mi><msubsup><mrow><mi>S</mi></mrow><mrow><mi>b</mi><mo>,</mo><mi>s</mi></mrow><mrow><mi>a</mi></mrow></msubsup></math></span> containing a given spanning forest when <span><math><mi>s</mi><mo>=</mo><mn>1</mn></math></span> and 2. Particularly, when <span><math><mi>s</mi><mo>=</mo><mn>1</mn></math></span>, our result derives the number of spanning trees of complete split graph containing a given spanning forest, thereby extending Moon's result <span><span>[19]</span></span>.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142534362","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}