Pub Date : 2025-04-25DOI: 10.1016/j.disc.2025.114552
Huan Luo, Xiamiao Zhao, Mei Lu
<div><div>Let <span><math><mi>F</mi></math></span> be a family of graphs. A graph <em>G</em> is <span><math><mi>F</mi></math></span>-free if <em>G</em> does not contain any <span><math><mi>F</mi><mo>∈</mo><mi>F</mi></math></span> as a subgraph. The Turán number <span><math><mtext>ex</mtext><mo>(</mo><mi>n</mi><mo>,</mo><mi>F</mi><mo>)</mo></math></span> is the maximum number of edges in an <em>n</em>-vertex <span><math><mi>F</mi></math></span>-free graph. Let <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>s</mi></mrow></msub></math></span> be the matching consisting of <em>s</em> independent edges. Recently, Alon and Frankl determined the exact value of <span><math><mtext>ex</mtext><mo>(</mo><mi>n</mi><mo>,</mo><mo>{</mo><msub><mrow><mi>K</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>,</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>s</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>}</mo><mo>)</mo></math></span>. Gerbner obtained several results about <span><math><mtext>ex</mtext><mo>(</mo><mi>n</mi><mo>,</mo><mo>{</mo><mi>F</mi><mo>,</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>s</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>}</mo><mo>)</mo></math></span> when <em>F</em> satisfies certain properties. In this paper, we determine the exact value of <span><math><mtext>ex</mtext><mo>(</mo><mi>n</mi><mo>,</mo><mo>{</mo><msub><mrow><mi>K</mi></mrow><mrow><mi>ℓ</mi><mo>,</mo><mi>t</mi></mrow></msub><mo>,</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>s</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>}</mo><mo>)</mo></math></span> when <span><math><mi>s</mi><mo>,</mo><mi>n</mi></math></span> are large enough for every <span><math><mn>3</mn><mo>≤</mo><mi>ℓ</mi><mo>≤</mo><mi>t</mi></math></span>. When <em>n</em> is large enough, we also show that <span><math><mtext>ex</mtext><mo>(</mo><mi>n</mi><mo>,</mo><mo>{</mo><msub><mrow><mi>K</mi></mrow><mrow><mn>2</mn><mo>,</mo><mn>2</mn></mrow></msub><mo>,</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>s</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>}</mo><mo>)</mo><mo>=</mo><mi>n</mi><mo>+</mo><mrow><mo>(</mo><mtable><mtr><mtd><mi>s</mi></mtd></mtr><mtr><mtd><mn>2</mn></mtd></mtr></mtable><mo>)</mo></mrow><mo>−</mo><mrow><mo>⌈</mo><mfrac><mrow><mi>s</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>⌉</mo></mrow></math></span> for <span><math><mi>s</mi><mo>≥</mo><mn>12</mn></math></span> and <span><math><mtext>ex</mtext><mo>(</mo><mi>n</mi><mo>,</mo><mo>{</mo><msub><mrow><mi>K</mi></mrow><mrow><mn>2</mn><mo>,</mo><mi>t</mi></mrow></msub><mo>,</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>s</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>}</mo><mo>)</mo><mo>=</mo><mi>n</mi><mo>+</mo><mo>(</mo><mi>t</mi><mo>−</mo><mn>1</mn><mo>)</mo><mrow><mo>(</mo><mtable><mtr><mtd><mi>s</mi></mtd></mtr><mtr><mtd><mn>2</mn></mtd></mtr></mtable><mo>)</mo></mrow><mo>−</mo><mrow><mo>⌈</mo><mfrac><mrow><mi>s</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>⌉</mo></mrow></math></span> when <span><math><mi>t</mi><mo>≥</mo><mn>3</mn></math></span> and <em>s</em> is large enough.</div><
设F是一个图族。如果图G不包含任何F∈F作为子图,则图G是F自由的。Turán数字ex(n,F)是一个有n顶点的无F图的最大边数。设Ms为由s条独立边组成的匹配。最近,Alon和Frankl确定了ex(n,{Km,Ms+1})的确切值。Gerbner得到了当F满足某些性质时ex(n,{F,Ms+1})的几个结果。在本文中,我们确定了当s,n足够大且每3≤r≤t时ex(n,{K,t, m +1})的精确值。当n足够大时,我们还证明了当s≥12时ex(n,{K2,2,Ms+1})=n+(s2)−≤≤2s;当t≥3且s足够大时,ex(n,{K2,t,Ms+1})=n+(t−1)(s2)−≤≤2s;
{"title":"Turán number of complete bipartite graphs with bounded matching number","authors":"Huan Luo, Xiamiao Zhao, Mei Lu","doi":"10.1016/j.disc.2025.114552","DOIUrl":"10.1016/j.disc.2025.114552","url":null,"abstract":"<div><div>Let <span><math><mi>F</mi></math></span> be a family of graphs. A graph <em>G</em> is <span><math><mi>F</mi></math></span>-free if <em>G</em> does not contain any <span><math><mi>F</mi><mo>∈</mo><mi>F</mi></math></span> as a subgraph. The Turán number <span><math><mtext>ex</mtext><mo>(</mo><mi>n</mi><mo>,</mo><mi>F</mi><mo>)</mo></math></span> is the maximum number of edges in an <em>n</em>-vertex <span><math><mi>F</mi></math></span>-free graph. Let <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>s</mi></mrow></msub></math></span> be the matching consisting of <em>s</em> independent edges. Recently, Alon and Frankl determined the exact value of <span><math><mtext>ex</mtext><mo>(</mo><mi>n</mi><mo>,</mo><mo>{</mo><msub><mrow><mi>K</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>,</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>s</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>}</mo><mo>)</mo></math></span>. Gerbner obtained several results about <span><math><mtext>ex</mtext><mo>(</mo><mi>n</mi><mo>,</mo><mo>{</mo><mi>F</mi><mo>,</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>s</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>}</mo><mo>)</mo></math></span> when <em>F</em> satisfies certain properties. In this paper, we determine the exact value of <span><math><mtext>ex</mtext><mo>(</mo><mi>n</mi><mo>,</mo><mo>{</mo><msub><mrow><mi>K</mi></mrow><mrow><mi>ℓ</mi><mo>,</mo><mi>t</mi></mrow></msub><mo>,</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>s</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>}</mo><mo>)</mo></math></span> when <span><math><mi>s</mi><mo>,</mo><mi>n</mi></math></span> are large enough for every <span><math><mn>3</mn><mo>≤</mo><mi>ℓ</mi><mo>≤</mo><mi>t</mi></math></span>. When <em>n</em> is large enough, we also show that <span><math><mtext>ex</mtext><mo>(</mo><mi>n</mi><mo>,</mo><mo>{</mo><msub><mrow><mi>K</mi></mrow><mrow><mn>2</mn><mo>,</mo><mn>2</mn></mrow></msub><mo>,</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>s</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>}</mo><mo>)</mo><mo>=</mo><mi>n</mi><mo>+</mo><mrow><mo>(</mo><mtable><mtr><mtd><mi>s</mi></mtd></mtr><mtr><mtd><mn>2</mn></mtd></mtr></mtable><mo>)</mo></mrow><mo>−</mo><mrow><mo>⌈</mo><mfrac><mrow><mi>s</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>⌉</mo></mrow></math></span> for <span><math><mi>s</mi><mo>≥</mo><mn>12</mn></math></span> and <span><math><mtext>ex</mtext><mo>(</mo><mi>n</mi><mo>,</mo><mo>{</mo><msub><mrow><mi>K</mi></mrow><mrow><mn>2</mn><mo>,</mo><mi>t</mi></mrow></msub><mo>,</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>s</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>}</mo><mo>)</mo><mo>=</mo><mi>n</mi><mo>+</mo><mo>(</mo><mi>t</mi><mo>−</mo><mn>1</mn><mo>)</mo><mrow><mo>(</mo><mtable><mtr><mtd><mi>s</mi></mtd></mtr><mtr><mtd><mn>2</mn></mtd></mtr></mtable><mo>)</mo></mrow><mo>−</mo><mrow><mo>⌈</mo><mfrac><mrow><mi>s</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>⌉</mo></mrow></math></span> when <span><math><mi>t</mi><mo>≥</mo><mn>3</mn></math></span> and <em>s</em> is large enough.</div><","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 9","pages":"Article 114552"},"PeriodicalIF":0.7,"publicationDate":"2025-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143867927","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-04-24DOI: 10.1016/j.disc.2025.114547
Matt Burnham, Aysel Erey
A maximal matching of a graph G is a matching of G which is not properly contained in any other matching of G. Let be the number of maximal matchings of size k in G. The maximal matching polynomial of G is defined by . It is known that maximal matching polynomials generalize the well-known matching polynomials, as the matching polynomial of every graph can be obtained from the maximal matching polynomial of some other graph. While the roots of matching polynomials have been extensively studied and well understood, the study of the roots of maximal matching polynomials has not been developed. In this article, we study the location of the roots of these polynomials. We show that maximal matching polynomials of paths and cycles have only real roots, and provide interlacing relations for their roots. On the other hand, unlike matching polynomials, maximal matching polynomials can have non-real roots, and we provide an infinite family of graphs whose maximal matching polynomials have non-real roots.
让 mk(G) 表示 G 中大小为 k 的最大匹配数。G 的最大匹配多项式定义为 m(G;x)=∑kmk(G)xk。众所周知,最大匹配多项式概括了众所周知的匹配多项式,因为每个图的匹配多项式都可以从另一些图的最大匹配多项式得到。虽然匹配多项式的根已经得到了广泛的研究和很好的理解,但对最大匹配多项式的根的研究还没有发展起来。在本文中,我们将研究这些多项式根的位置。我们证明了路径和循环的最大匹配多项式只有实数根,并为它们的根提供了交错关系。另一方面,与匹配多项式不同,最大匹配多项式可以有非实根,我们提供了最大匹配多项式有非实根的无限图族。
{"title":"On the roots of maximal matching polynomials","authors":"Matt Burnham, Aysel Erey","doi":"10.1016/j.disc.2025.114547","DOIUrl":"10.1016/j.disc.2025.114547","url":null,"abstract":"<div><div>A <em>maximal matching</em> of a graph <em>G</em> is a matching of <em>G</em> which is not properly contained in any other matching of <em>G</em>. Let <span><math><msub><mrow><mi>m</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span> be the number of maximal matchings of size <em>k</em> in <em>G</em>. The <em>maximal matching polynomial</em> of <em>G</em> is defined by <span><math><mi>m</mi><mo>(</mo><mi>G</mi><mo>;</mo><mi>x</mi><mo>)</mo><mo>=</mo><msub><mrow><mo>∑</mo></mrow><mrow><mi>k</mi></mrow></msub><msub><mrow><mi>m</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo><msup><mrow><mi>x</mi></mrow><mrow><mi>k</mi></mrow></msup></math></span>. It is known that maximal matching polynomials generalize the well-known matching polynomials, as the matching polynomial of every graph can be obtained from the maximal matching polynomial of some other graph. While the roots of matching polynomials have been extensively studied and well understood, the study of the roots of maximal matching polynomials has not been developed. In this article, we study the location of the roots of these polynomials. We show that maximal matching polynomials of paths and cycles have only real roots, and provide interlacing relations for their roots. On the other hand, unlike matching polynomials, maximal matching polynomials can have non-real roots, and we provide an infinite family of graphs whose maximal matching polynomials have non-real roots.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 9","pages":"Article 114547"},"PeriodicalIF":0.7,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143863561","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-04-24DOI: 10.1016/j.disc.2025.114551
Kassie Archer, Aaron Geary
We consider a few special cases of the more general question: How many permutations have the property that has j descents for some j? In this paper, we first enumerate Grassmannian permutations π by the number of descents in . We then consider all permutations whose square has exactly one descent, fully enumerating when the descent is “small” and providing a lower bound in the general case. Finally, we enumerate permutations whose square or cube has the maximum number of descents, and finish the paper with a few future directions for study.
{"title":"Descents in powers of permutations","authors":"Kassie Archer, Aaron Geary","doi":"10.1016/j.disc.2025.114551","DOIUrl":"10.1016/j.disc.2025.114551","url":null,"abstract":"<div><div>We consider a few special cases of the more general question: How many permutations <span><math><mi>π</mi><mo>∈</mo><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> have the property that <span><math><msup><mrow><mi>π</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> has <em>j</em> descents for some <em>j</em>? In this paper, we first enumerate Grassmannian permutations <em>π</em> by the number of descents in <span><math><msup><mrow><mi>π</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>. We then consider all permutations whose square has exactly one descent, fully enumerating when the descent is “small” and providing a lower bound in the general case. Finally, we enumerate permutations whose square or cube has the maximum number of descents, and finish the paper with a few future directions for study.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 9","pages":"Article 114551"},"PeriodicalIF":0.7,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143863312","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-04-24DOI: 10.1016/j.disc.2025.114546
Peter Frankl , Jian Wang
A family is called intersecting if any two members of it have non-empty intersection. The covering number of is defined as the minimum integer p such that there exists satisfying and for all . Define as the maximum size of an intersecting family with covering number at least p. The value of is only known for . About thirty years ago, was determined asymptotically by the first author, Ota and Tokushige. In the present paper, we determine for and .
{"title":"Intersecting families with covering number five","authors":"Peter Frankl , Jian Wang","doi":"10.1016/j.disc.2025.114546","DOIUrl":"10.1016/j.disc.2025.114546","url":null,"abstract":"<div><div>A family <span><math><mi>F</mi><mo>⊂</mo><mrow><mo>(</mo><mtable><mtr><mtd><mrow><mo>[</mo><mi>n</mi><mo>]</mo></mrow></mtd></mtr><mtr><mtd><mi>k</mi></mtd></mtr></mtable><mo>)</mo></mrow></math></span> is called intersecting if any two members of it have non-empty intersection. The covering number of <span><math><mi>F</mi></math></span> is defined as the minimum integer <em>p</em> such that there exists <span><math><mi>T</mi><mo>⊂</mo><mo>{</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>n</mi><mo>}</mo></math></span> satisfying <span><math><mo>|</mo><mi>T</mi><mo>|</mo><mo>=</mo><mi>p</mi></math></span> and <span><math><mi>T</mi><mo>∩</mo><mi>F</mi><mo>≠</mo><mo>∅</mo></math></span> for all <span><math><mi>F</mi><mo>∈</mo><mi>F</mi></math></span>. Define <span><math><mi>m</mi><mo>(</mo><mi>n</mi><mo>,</mo><mi>k</mi><mo>,</mo><mi>p</mi><mo>)</mo></math></span> as the maximum size of an intersecting family <span><math><mi>F</mi><mo>⊂</mo><mrow><mo>(</mo><mtable><mtr><mtd><mrow><mo>[</mo><mi>n</mi><mo>]</mo></mrow></mtd></mtr><mtr><mtd><mi>k</mi></mtd></mtr></mtable><mo>)</mo></mrow></math></span> with covering number at least <em>p</em>. The value of <span><math><mi>m</mi><mo>(</mo><mi>n</mi><mo>,</mo><mi>k</mi><mo>,</mo><mi>p</mi><mo>)</mo></math></span> is only known for <span><math><mi>p</mi><mo>=</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mn>3</mn><mo>,</mo><mn>4</mn></math></span>. About thirty years ago, <span><math><mi>m</mi><mo>(</mo><mi>n</mi><mo>,</mo><mi>k</mi><mo>,</mo><mn>5</mn><mo>)</mo></math></span> was determined asymptotically by the first author, Ota and Tokushige. In the present paper, we determine <span><math><mi>m</mi><mo>(</mo><mi>n</mi><mo>,</mo><mi>k</mi><mo>,</mo><mn>5</mn><mo>)</mo></math></span> for <span><math><mi>k</mi><mo>≥</mo><mn>69</mn></math></span> and <span><math><mi>n</mi><mo>≥</mo><mn>5</mn><msup><mrow><mi>k</mi></mrow><mrow><mn>6</mn></mrow></msup></math></span>.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 9","pages":"Article 114546"},"PeriodicalIF":0.7,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143863311","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-04-24DOI: 10.1016/j.disc.2025.114505
Will Burstein
<div><div>Let <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span> denote the finite field of <em>q</em> elements. Let <span><math><msubsup><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow><mrow><mi>d</mi></mrow></msubsup></math></span> be the <em>d</em>-dimensional vector space over the field <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span>. Let <span><math><msubsup><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow><mrow><mo>⁎</mo></mrow></msubsup><mo>:</mo><mo>=</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>∖</mo><mo>{</mo><mn>0</mn><mo>}</mo></math></span>. Let <span><math><msup><mrow><mo>(</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup><mo>:</mo><mo>=</mo><mo>{</mo><msup><mrow><mi>t</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>:</mo><mi>t</mi><mo>∈</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>}</mo></math></span>. For <span><math><mi>E</mi><mo>⊂</mo><msubsup><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow><mrow><mi>d</mi></mrow></msubsup></math></span>, denote the distance set by <span><math><mi>Δ</mi><mo>(</mo><mi>E</mi><mo>)</mo><mo>:</mo><mo>=</mo><mo>{</mo><mo>‖</mo><mi>x</mi><mo>−</mo><mi>y</mi><mo>‖</mo><mo>:</mo><mo>=</mo><msup><mrow><mo>(</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>−</mo><msub><mrow><mi>y</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><mo>⋯</mo><mo>+</mo><msup><mrow><mo>(</mo><msub><mrow><mi>x</mi></mrow><mrow><mi>d</mi></mrow></msub><mo>−</mo><msub><mrow><mi>y</mi></mrow><mrow><mi>d</mi></mrow></msub><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup><mo>:</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>∈</mo><mi>E</mi><mo>}</mo></math></span>. Denote the Erdős quotient set by <span><math><mfrac><mrow><mi>Δ</mi><mo>(</mo><mi>E</mi><mo>)</mo></mrow><mrow><mi>Δ</mi><mo>(</mo><mi>E</mi><mo>)</mo></mrow></mfrac><mo>:</mo><mo>=</mo><mo>{</mo><mfrac><mrow><mi>s</mi></mrow><mrow><mi>t</mi></mrow></mfrac><mo>:</mo><mi>s</mi><mo>,</mo><mi>t</mi><mo>∈</mo><mi>Δ</mi><mo>(</mo><mi>E</mi><mo>)</mo><mo>,</mo><mi>t</mi><mo>≠</mo><mn>0</mn><mo>}</mo><mo>=</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span>.</div><div>The Erdős quotient set problem was introduced in <span><span>[13]</span></span> where it was shown that for even <span><math><mi>d</mi><mo>≥</mo><mn>2</mn></math></span>, if <span><math><mi>E</mi><mo>⊂</mo><msubsup><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msubsup></math></span> such that <span><math><mo>|</mo><mi>E</mi><mo>|</mo><mo>≫</mo><msup><mrow><mi>q</mi></mrow><mrow><mi>d</mi><mo>/</mo><mn>2</mn></mrow></msup></math></span>, then <span><math><mfrac><mrow><mi>Δ</mi><mo>(</mo><mi>E</mi><mo>)</mo></mrow><mrow><mi>Δ</mi><mo>(</mo><mi>E</mi><mo>)</mo></mrow></mfrac><mo>=</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math>
{"title":"Group action approaches in Erdős quotient set problem","authors":"Will Burstein","doi":"10.1016/j.disc.2025.114505","DOIUrl":"10.1016/j.disc.2025.114505","url":null,"abstract":"<div><div>Let <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span> denote the finite field of <em>q</em> elements. Let <span><math><msubsup><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow><mrow><mi>d</mi></mrow></msubsup></math></span> be the <em>d</em>-dimensional vector space over the field <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span>. Let <span><math><msubsup><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow><mrow><mo>⁎</mo></mrow></msubsup><mo>:</mo><mo>=</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>∖</mo><mo>{</mo><mn>0</mn><mo>}</mo></math></span>. Let <span><math><msup><mrow><mo>(</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup><mo>:</mo><mo>=</mo><mo>{</mo><msup><mrow><mi>t</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>:</mo><mi>t</mi><mo>∈</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>}</mo></math></span>. For <span><math><mi>E</mi><mo>⊂</mo><msubsup><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow><mrow><mi>d</mi></mrow></msubsup></math></span>, denote the distance set by <span><math><mi>Δ</mi><mo>(</mo><mi>E</mi><mo>)</mo><mo>:</mo><mo>=</mo><mo>{</mo><mo>‖</mo><mi>x</mi><mo>−</mo><mi>y</mi><mo>‖</mo><mo>:</mo><mo>=</mo><msup><mrow><mo>(</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>−</mo><msub><mrow><mi>y</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><mo>⋯</mo><mo>+</mo><msup><mrow><mo>(</mo><msub><mrow><mi>x</mi></mrow><mrow><mi>d</mi></mrow></msub><mo>−</mo><msub><mrow><mi>y</mi></mrow><mrow><mi>d</mi></mrow></msub><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup><mo>:</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>∈</mo><mi>E</mi><mo>}</mo></math></span>. Denote the Erdős quotient set by <span><math><mfrac><mrow><mi>Δ</mi><mo>(</mo><mi>E</mi><mo>)</mo></mrow><mrow><mi>Δ</mi><mo>(</mo><mi>E</mi><mo>)</mo></mrow></mfrac><mo>:</mo><mo>=</mo><mo>{</mo><mfrac><mrow><mi>s</mi></mrow><mrow><mi>t</mi></mrow></mfrac><mo>:</mo><mi>s</mi><mo>,</mo><mi>t</mi><mo>∈</mo><mi>Δ</mi><mo>(</mo><mi>E</mi><mo>)</mo><mo>,</mo><mi>t</mi><mo>≠</mo><mn>0</mn><mo>}</mo><mo>=</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span>.</div><div>The Erdős quotient set problem was introduced in <span><span>[13]</span></span> where it was shown that for even <span><math><mi>d</mi><mo>≥</mo><mn>2</mn></math></span>, if <span><math><mi>E</mi><mo>⊂</mo><msubsup><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msubsup></math></span> such that <span><math><mo>|</mo><mi>E</mi><mo>|</mo><mo>≫</mo><msup><mrow><mi>q</mi></mrow><mrow><mi>d</mi><mo>/</mo><mn>2</mn></mrow></msup></math></span>, then <span><math><mfrac><mrow><mi>Δ</mi><mo>(</mo><mi>E</mi><mo>)</mo></mrow><mrow><mi>Δ</mi><mo>(</mo><mi>E</mi><mo>)</mo></mrow></mfrac><mo>=</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 9","pages":"Article 114505"},"PeriodicalIF":0.7,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143863291","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-04-22DOI: 10.1016/j.disc.2025.114549
Xiao Lin, Shanqi Pang, Guangzhou Chen
Nested orthogonal arrays (NOAs) are more and more widely used in diverse experiments. An important problem in the study of NOAs is to determine the minimal number of runs, i.e., to find the bounds on the rows for NOAs. These bounds are quite powerful in proving nonexistence. Although the bounds for symmetric NOAs were derived over a decade, the bounds for asymmetric NOAs remain an open problem. This article presents the bounds for asymmetric NOAs.
{"title":"Bounds for asymmetric nested orthogonal arrays","authors":"Xiao Lin, Shanqi Pang, Guangzhou Chen","doi":"10.1016/j.disc.2025.114549","DOIUrl":"10.1016/j.disc.2025.114549","url":null,"abstract":"<div><div>Nested orthogonal arrays (NOAs) are more and more widely used in diverse experiments. An important problem in the study of NOAs is to determine the minimal number of runs, i.e., to find the bounds on the rows for NOAs. These bounds are quite powerful in proving nonexistence. Although the bounds for symmetric NOAs were derived over a decade, the bounds for asymmetric NOAs remain an open problem. This article presents the bounds for asymmetric NOAs.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 9","pages":"Article 114549"},"PeriodicalIF":0.7,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143859144","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-04-22DOI: 10.1016/j.disc.2025.114545
Ziyuan Wang , Lei Zhang , Jianhua Tu , Liming Xiong
Let G be a simple graph. A dissociation set of G is defined as a set of vertices that induces a subgraph in which every vertex has a degree of at most 1. A dissociation set is maximal if it is not contained as a proper subset in any other dissociation set. We introduce the notation to represent the number of maximal dissociation sets in G. This study focuses on trees, specifically showing that for any tree T of order , the following inequality holds: We also identify extremal trees that attain this upper bound. Additionally, to establish the upper bound on the number of maximal dissociation sets in trees of order n, we also determine the second largest number of maximal dissociation sets in forests of order n.
{"title":"Upper bound for the number of maximal dissociation sets in trees","authors":"Ziyuan Wang , Lei Zhang , Jianhua Tu , Liming Xiong","doi":"10.1016/j.disc.2025.114545","DOIUrl":"10.1016/j.disc.2025.114545","url":null,"abstract":"<div><div>Let <em>G</em> be a simple graph. A dissociation set of <em>G</em> is defined as a set of vertices that induces a subgraph in which every vertex has a degree of at most 1. A dissociation set is maximal if it is not contained as a proper subset in any other dissociation set. We introduce the notation <span><math><mi>Φ</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> to represent the number of maximal dissociation sets in <em>G</em>. This study focuses on trees, specifically showing that for any tree <em>T</em> of order <span><math><mi>n</mi><mo>≥</mo><mn>4</mn></math></span>, the following inequality holds:<span><span><span><math><mi>Φ</mi><mo>(</mo><mi>T</mi><mo>)</mo><mo>≤</mo><msup><mrow><mn>3</mn></mrow><mrow><mfrac><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow><mrow><mn>3</mn></mrow></mfrac></mrow></msup><mo>+</mo><mfrac><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow><mrow><mn>3</mn></mrow></mfrac><mo>.</mo></math></span></span></span> We also identify extremal trees that attain this upper bound. Additionally, to establish the upper bound on the number of maximal dissociation sets in trees of order <em>n</em>, we also determine the second largest number of maximal dissociation sets in forests of order <em>n</em>.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 9","pages":"Article 114545"},"PeriodicalIF":0.7,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143855201","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-04-16DOI: 10.1016/j.disc.2025.114542
Lihuan Mao, Fu Yan
Two graphs G and H are cospectral if their adjacency matrices share the same spectrum. Constructing cospectral non-isomorphic graphs has been studied extensively for many years and various constructions are known in the literature, e.g. the famous GM-switching method. In this paper, we shall construct cospectral graphs via regular rational orthogonal matrix Q with level two and three. We provide two straightforward algorithms to characterize the adjacency matrix A of the graph G such that is again a (0,1)-matrix, and introduce two new switching methods to construct families of cospectral graphs which generalized the GM-switching to some extent.
{"title":"Constructing cospectral graphs via regular rational orthogonal matrix with level two and three","authors":"Lihuan Mao, Fu Yan","doi":"10.1016/j.disc.2025.114542","DOIUrl":"10.1016/j.disc.2025.114542","url":null,"abstract":"<div><div>Two graphs <em>G</em> and <em>H</em> are <em>cospectral</em> if their adjacency matrices share the same spectrum. Constructing cospectral non-isomorphic graphs has been studied extensively for many years and various constructions are known in the literature, e.g. the famous GM-switching method. In this paper, we shall construct cospectral graphs via regular rational orthogonal matrix <em>Q</em> with level two and three. We provide two straightforward algorithms to characterize the adjacency matrix <em>A</em> of the graph <em>G</em> such that <span><math><msup><mrow><mi>Q</mi></mrow><mrow><mi>T</mi></mrow></msup><mi>A</mi><mi>Q</mi></math></span> is again a (0,1)-matrix, and introduce two new switching methods to construct families of cospectral graphs which generalized the GM-switching to some extent.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 10","pages":"Article 114542"},"PeriodicalIF":0.7,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143833757","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-04-16DOI: 10.1016/j.disc.2025.114550
Wenqian Zhang
For a graph G, the spectral radius of G is the largest eigenvalue of its adjacency matrix. An odd wheel with is a graph obtained from a cycle of order 2k by adding a new vertex connecting to all the vertices of the cycle. Let be the set of -free graphs of order n with the maximum spectral radius. Very recently, Cioabă, Desai and Tait [4] characterized the graphs in for sufficiently large n, where and . And they left the case as a problem. In this paper, we settle this problem. Moreover, we completely characterize the graphs in when is even and is sufficiently large. Consequently, the graphs in are characterized completely for any and sufficiently large n.
{"title":"More results on the spectral radius of graphs with no odd wheels","authors":"Wenqian Zhang","doi":"10.1016/j.disc.2025.114550","DOIUrl":"10.1016/j.disc.2025.114550","url":null,"abstract":"<div><div>For a graph <em>G</em>, the spectral radius <span><math><msub><mrow><mi>λ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span> of <em>G</em> is the largest eigenvalue of its adjacency matrix. An odd wheel <span><math><msub><mrow><mi>W</mi></mrow><mrow><mn>2</mn><mi>k</mi><mo>+</mo><mn>1</mn></mrow></msub></math></span> with <span><math><mi>k</mi><mo>≥</mo><mn>2</mn></math></span> is a graph obtained from a cycle of order 2<em>k</em> by adding a new vertex connecting to all the vertices of the cycle. Let <span><math><mrow><mi>SPEX</mi></mrow><mo>(</mo><mi>n</mi><mo>,</mo><msub><mrow><mi>W</mi></mrow><mrow><mn>2</mn><mi>k</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>)</mo></math></span> be the set of <span><math><msub><mrow><mi>W</mi></mrow><mrow><mn>2</mn><mi>k</mi><mo>+</mo><mn>1</mn></mrow></msub></math></span>-free graphs of order <em>n</em> with the maximum spectral radius. Very recently, Cioabă, Desai and Tait <span><span>[4]</span></span> characterized the graphs in <span><math><mrow><mi>SPEX</mi></mrow><mo>(</mo><mi>n</mi><mo>,</mo><msub><mrow><mi>W</mi></mrow><mrow><mn>2</mn><mi>k</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>)</mo></math></span> for sufficiently large <em>n</em>, where <span><math><mi>k</mi><mo>≥</mo><mn>2</mn></math></span> and <span><math><mi>k</mi><mo>≠</mo><mn>4</mn><mo>,</mo><mn>5</mn></math></span>. And they left the case <span><math><mi>k</mi><mo>=</mo><mn>4</mn><mo>,</mo><mn>5</mn></math></span> as a problem. In this paper, we settle this problem. Moreover, we completely characterize the graphs in <span><math><mrow><mi>SPEX</mi></mrow><mo>(</mo><mi>n</mi><mo>,</mo><msub><mrow><mi>W</mi></mrow><mrow><mn>2</mn><mi>k</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>)</mo></math></span> when <span><math><mi>k</mi><mo>≥</mo><mn>4</mn></math></span> is even and <span><math><mi>n</mi><mo>≡</mo><mn>2</mn><mspace></mspace><mo>(</mo><mrow><mtext>mod</mtext><mspace></mspace></mrow><mn>4</mn><mo>)</mo></math></span> is sufficiently large. Consequently, the graphs in <span><math><mrow><mi>SPEX</mi></mrow><mo>(</mo><mi>n</mi><mo>,</mo><msub><mrow><mi>W</mi></mrow><mrow><mn>2</mn><mi>k</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>)</mo></math></span> are characterized completely for any <span><math><mi>k</mi><mo>≥</mo><mn>2</mn></math></span> and sufficiently large <em>n</em>.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 9","pages":"Article 114550"},"PeriodicalIF":0.7,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143834555","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-04-14DOI: 10.1016/j.disc.2025.114543
Guanghui Li , Xiwang Cao
The boomerang attack developed by Wagner is a cryptanalysis technique against block ciphers. A new theoretical tool, the Boomerang Connectivity Table (BCT) and the corresponding boomerang uniformity were introduced to evaluate the resistance of a block cipher against the boomerang attack. Using a multiplier differential, Stănică (2021) [28] extended the notion of boomerang uniformity to c-boomerang uniformity. In this paper, we focus on two classes of permutation polynomials over . For one of these, we show that the c-boomerang uniformity of this function is equal to 1. For the second type of function, we first consider the c-BCT entries. We then explicitly determine the c-boomerang spectrum of this function by means of characters and some techniques in solving equations over .
{"title":"The c-boomerang uniformity and c-boomerang spectrum of two classes of permutation polynomials over the finite field F2n","authors":"Guanghui Li , Xiwang Cao","doi":"10.1016/j.disc.2025.114543","DOIUrl":"10.1016/j.disc.2025.114543","url":null,"abstract":"<div><div>The boomerang attack developed by Wagner is a cryptanalysis technique against block ciphers. A new theoretical tool, the Boomerang Connectivity Table (BCT) and the corresponding boomerang uniformity were introduced to evaluate the resistance of a block cipher against the boomerang attack. Using a multiplier differential, Stănică (2021) <span><span>[28]</span></span> extended the notion of boomerang uniformity to <em>c</em>-boomerang uniformity. In this paper, we focus on two classes of permutation polynomials over <span><math><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mn>2</mn></mrow><mrow><mi>n</mi></mrow></msup></mrow></msub></math></span>. For one of these, we show that the <em>c</em>-boomerang uniformity of this function is equal to 1. For the second type of function, we first consider the <em>c</em>-BCT entries. We then explicitly determine the <em>c</em>-boomerang spectrum of this function by means of characters and some techniques in solving equations over <span><math><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mn>2</mn></mrow><mrow><mi>n</mi></mrow></msup></mrow></msub></math></span>.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 9","pages":"Article 114543"},"PeriodicalIF":0.7,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143825675","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}