首页 > 最新文献

Discrete Mathematics最新文献

英文 中文
Sets of vertices with extremal energy
IF 0.7 3区 数学 Q2 MATHEMATICS Pub Date : 2025-03-07 DOI: 10.1016/j.disc.2025.114466
Neal Bushaw, Brent Cody, Chris Leffler
We define various notions of energy of a set of vertices in a graph, which generalize two of the most widely studied graphical indices: the Wiener index and the Harary index. We provide a new proof of a result due to Douthett and Krantz, which says that for cycles, the sets of vertices which have minimal energy among all sets of the same size are precisely the maximally even sets, as defined in Clough and Douthett's work on music theory. Generalizing a theorem of Clough and Douthett, we prove that a finite, simple, connected graph is distance degree regular if and only if whenever a set of vertices has minimal energy, its complement also has minimal energy. We also provide several characterizations of sets of vertices in finite paths and cycles for which the sum of all pairwise distances between vertices in the set is maximal among all sets of the same size.
{"title":"Sets of vertices with extremal energy","authors":"Neal Bushaw,&nbsp;Brent Cody,&nbsp;Chris Leffler","doi":"10.1016/j.disc.2025.114466","DOIUrl":"10.1016/j.disc.2025.114466","url":null,"abstract":"<div><div>We define various notions of energy of a set of vertices in a graph, which generalize two of the most widely studied graphical indices: the Wiener index and the Harary index. We provide a new proof of a result due to Douthett and Krantz, which says that for cycles, the sets of vertices which have minimal energy among all sets of the same size are precisely the <em>maximally even sets</em>, as defined in Clough and Douthett's work on music theory. Generalizing a theorem of Clough and Douthett, we prove that a finite, simple, connected graph is distance degree regular if and only if whenever a set of vertices has minimal energy, its complement also has minimal energy. We also provide several characterizations of sets of vertices in finite paths and cycles for which the sum of all pairwise distances between vertices in the set is maximal among all sets of the same size.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 7","pages":"Article 114466"},"PeriodicalIF":0.7,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143562108","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
N-ary groups of panmagic permutations from the Post coset theorem
IF 0.7 3区 数学 Q2 MATHEMATICS Pub Date : 2025-03-07 DOI: 10.1016/j.disc.2025.114467
Sergiy Koshkin , Jaeho Lee
Panmagic permutations are permutations whose matrices are panmagic squares, better known as maximal configurations of non-attacking queens on a toroidal chessboard. Some of them, affine panmagic permutations, can be conveniently described by linear formulas of modular arithmetic, and we show that their sets are a generalization of groups with N-ary multiplication instead of binary one. With the help of the Post coset theorem, we identify panmagic N-ary groups as cosets of the dihedral subgroup and its extensions in the group of all affine permutations. We also investigate decomposition of panmagic permutations into disjoint cycles and find many connections with classical topics of number theory and combinatorics: square-free numbers, 4k+1 primes, quadratic residues, cycle indices from Polya counting, and linear congruential generators.
{"title":"N-ary groups of panmagic permutations from the Post coset theorem","authors":"Sergiy Koshkin ,&nbsp;Jaeho Lee","doi":"10.1016/j.disc.2025.114467","DOIUrl":"10.1016/j.disc.2025.114467","url":null,"abstract":"<div><div>Panmagic permutations are permutations whose matrices are panmagic squares, better known as maximal configurations of non-attacking queens on a toroidal chessboard. Some of them, affine panmagic permutations, can be conveniently described by linear formulas of modular arithmetic, and we show that their sets are a generalization of groups with <em>N</em>-ary multiplication instead of binary one. With the help of the Post coset theorem, we identify panmagic <em>N</em>-ary groups as cosets of the dihedral subgroup and its extensions in the group of all affine permutations. We also investigate decomposition of panmagic permutations into disjoint cycles and find many connections with classical topics of number theory and combinatorics: square-free numbers, <span><math><mn>4</mn><mi>k</mi><mo>+</mo><mn>1</mn></math></span> primes, quadratic residues, cycle indices from Polya counting, and linear congruential generators.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 8","pages":"Article 114467"},"PeriodicalIF":0.7,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143563799","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On Galois LCD codes and LCPs of codes over mixed alphabets
IF 0.7 3区 数学 Q2 MATHEMATICS Pub Date : 2025-03-07 DOI: 10.1016/j.disc.2025.114465
Leijo Jose, Anuradha Sharma
<div><div>Let <span>R</span> be a finite commutative chain ring with the maximal ideal <span><math><mi>γ</mi><mi>R</mi></math></span> of nilpotency index <span><math><mi>e</mi><mo>≥</mo><mn>2</mn></math></span>, and let <span><math><mover><mrow><mi>R</mi></mrow><mrow><mo>ˇ</mo></mrow></mover><mo>=</mo><mi>R</mi><mo>/</mo><msup><mrow><mi>γ</mi></mrow><mrow><mi>s</mi></mrow></msup><mi>R</mi></math></span> for some positive integer <span><math><mi>s</mi><mo><</mo><mi>e</mi></math></span>. In this paper, we study and characterize Galois <span><math><mi>R</mi><mover><mrow><mi>R</mi></mrow><mrow><mo>ˇ</mo></mrow></mover></math></span>-LCD codes of an arbitrary block-length. We show that each weakly-free <span><math><mi>R</mi><mover><mrow><mi>R</mi></mrow><mrow><mo>ˇ</mo></mrow></mover></math></span>-linear code is monomially equivalent to a Galois <span><math><mi>R</mi><mover><mrow><mi>R</mi></mrow><mrow><mo>ˇ</mo></mrow></mover></math></span>-LCD code when <span><math><mo>|</mo><mi>R</mi><mo>/</mo><mi>γ</mi><mi>R</mi><mo>|</mo><mo>></mo><mn>4</mn></math></span>, while it is monomially equivalent to a Euclidean <span><math><mi>R</mi><mover><mrow><mi>R</mi></mrow><mrow><mo>ˇ</mo></mrow></mover></math></span>-LCD code when <span><math><mo>|</mo><mi>R</mi><mo>/</mo><mi>γ</mi><mi>R</mi><mo>|</mo><mo>></mo><mn>3</mn></math></span>. We also obtain enumeration formulae for all Euclidean and Hermitian <span><math><mi>R</mi><mover><mrow><mi>R</mi></mrow><mrow><mo>ˇ</mo></mrow></mover></math></span>-LCD codes of an arbitrary block-length. With the help of these enumeration formulae, we classify all Euclidean <span><math><msub><mrow><mi>Z</mi></mrow><mrow><mn>4</mn></mrow></msub><msub><mrow><mi>Z</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>-LCD codes and <span><math><msub><mrow><mi>Z</mi></mrow><mrow><mn>9</mn></mrow></msub><msub><mrow><mi>Z</mi></mrow><mrow><mn>3</mn></mrow></msub></math></span>-LCD codes of block-lengths <span><math><mo>(</mo><mn>1</mn><mo>,</mo><mn>1</mn><mo>)</mo></math></span>, <span><math><mo>(</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>)</mo></math></span>, <span><math><mo>(</mo><mn>2</mn><mo>,</mo><mn>1</mn><mo>)</mo></math></span>, <span><math><mo>(</mo><mn>2</mn><mo>,</mo><mn>2</mn><mo>)</mo></math></span>, <span><math><mo>(</mo><mn>3</mn><mo>,</mo><mn>1</mn><mo>)</mo></math></span> and <span><math><mo>(</mo><mn>3</mn><mo>,</mo><mn>2</mn><mo>)</mo></math></span> and all Hermitian <span><math><mfrac><mrow><msub><mrow><mi>F</mi></mrow><mrow><mn>4</mn></mrow></msub><mo>[</mo><mi>u</mi><mo>]</mo></mrow><mrow><mo>〈</mo><msup><mrow><mi>u</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>〉</mo></mrow></mfrac><mspace></mspace><msub><mrow><mi>F</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span>-LCD codes of block-lengths <span><math><mo>(</mo><mn>1</mn><mo>,</mo><mn>1</mn><mo>)</mo></math></span>, <span><math><mo>(</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>)</mo></math></span>, <span><math><mo>(</mo><mn>2</mn><mo>,</mo><mn>1</mn><mo>)
{"title":"On Galois LCD codes and LCPs of codes over mixed alphabets","authors":"Leijo Jose,&nbsp;Anuradha Sharma","doi":"10.1016/j.disc.2025.114465","DOIUrl":"10.1016/j.disc.2025.114465","url":null,"abstract":"&lt;div&gt;&lt;div&gt;Let &lt;span&gt;R&lt;/span&gt; be a finite commutative chain ring with the maximal ideal &lt;span&gt;&lt;math&gt;&lt;mi&gt;γ&lt;/mi&gt;&lt;mi&gt;R&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; of nilpotency index &lt;span&gt;&lt;math&gt;&lt;mi&gt;e&lt;/mi&gt;&lt;mo&gt;≥&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/math&gt;&lt;/span&gt;, and let &lt;span&gt;&lt;math&gt;&lt;mover&gt;&lt;mrow&gt;&lt;mi&gt;R&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;ˇ&lt;/mo&gt;&lt;/mrow&gt;&lt;/mover&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mi&gt;R&lt;/mi&gt;&lt;mo&gt;/&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;γ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;s&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mi&gt;R&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; for some positive integer &lt;span&gt;&lt;math&gt;&lt;mi&gt;s&lt;/mi&gt;&lt;mo&gt;&lt;&lt;/mo&gt;&lt;mi&gt;e&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;. In this paper, we study and characterize Galois &lt;span&gt;&lt;math&gt;&lt;mi&gt;R&lt;/mi&gt;&lt;mover&gt;&lt;mrow&gt;&lt;mi&gt;R&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;ˇ&lt;/mo&gt;&lt;/mrow&gt;&lt;/mover&gt;&lt;/math&gt;&lt;/span&gt;-LCD codes of an arbitrary block-length. We show that each weakly-free &lt;span&gt;&lt;math&gt;&lt;mi&gt;R&lt;/mi&gt;&lt;mover&gt;&lt;mrow&gt;&lt;mi&gt;R&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;ˇ&lt;/mo&gt;&lt;/mrow&gt;&lt;/mover&gt;&lt;/math&gt;&lt;/span&gt;-linear code is monomially equivalent to a Galois &lt;span&gt;&lt;math&gt;&lt;mi&gt;R&lt;/mi&gt;&lt;mover&gt;&lt;mrow&gt;&lt;mi&gt;R&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;ˇ&lt;/mo&gt;&lt;/mrow&gt;&lt;/mover&gt;&lt;/math&gt;&lt;/span&gt;-LCD code when &lt;span&gt;&lt;math&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;mi&gt;R&lt;/mi&gt;&lt;mo&gt;/&lt;/mo&gt;&lt;mi&gt;γ&lt;/mi&gt;&lt;mi&gt;R&lt;/mi&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;mo&gt;&gt;&lt;/mo&gt;&lt;mn&gt;4&lt;/mn&gt;&lt;/math&gt;&lt;/span&gt;, while it is monomially equivalent to a Euclidean &lt;span&gt;&lt;math&gt;&lt;mi&gt;R&lt;/mi&gt;&lt;mover&gt;&lt;mrow&gt;&lt;mi&gt;R&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;ˇ&lt;/mo&gt;&lt;/mrow&gt;&lt;/mover&gt;&lt;/math&gt;&lt;/span&gt;-LCD code when &lt;span&gt;&lt;math&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;mi&gt;R&lt;/mi&gt;&lt;mo&gt;/&lt;/mo&gt;&lt;mi&gt;γ&lt;/mi&gt;&lt;mi&gt;R&lt;/mi&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;mo&gt;&gt;&lt;/mo&gt;&lt;mn&gt;3&lt;/mn&gt;&lt;/math&gt;&lt;/span&gt;. We also obtain enumeration formulae for all Euclidean and Hermitian &lt;span&gt;&lt;math&gt;&lt;mi&gt;R&lt;/mi&gt;&lt;mover&gt;&lt;mrow&gt;&lt;mi&gt;R&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;ˇ&lt;/mo&gt;&lt;/mrow&gt;&lt;/mover&gt;&lt;/math&gt;&lt;/span&gt;-LCD codes of an arbitrary block-length. With the help of these enumeration formulae, we classify all Euclidean &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;Z&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;4&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;Z&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt;-LCD codes and &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;Z&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;9&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;Z&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;3&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt;-LCD codes of block-lengths &lt;span&gt;&lt;math&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt;, &lt;span&gt;&lt;math&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt;, &lt;span&gt;&lt;math&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt;, &lt;span&gt;&lt;math&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt;, &lt;span&gt;&lt;math&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mn&gt;3&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt; and &lt;span&gt;&lt;math&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mn&gt;3&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt; and all Hermitian &lt;span&gt;&lt;math&gt;&lt;mfrac&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;F&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;4&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;[&lt;/mo&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;mo&gt;]&lt;/mo&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;〈&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;〉&lt;/mo&gt;&lt;/mrow&gt;&lt;/mfrac&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;F&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;4&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt;-LCD codes of block-lengths &lt;span&gt;&lt;math&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt;, &lt;span&gt;&lt;math&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt;, &lt;span&gt;&lt;math&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;)","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 8","pages":"Article 114465"},"PeriodicalIF":0.7,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143563865","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Every nonsymmetric 4-class association scheme can be generated by a digraph
IF 0.7 3区 数学 Q2 MATHEMATICS Pub Date : 2025-03-07 DOI: 10.1016/j.disc.2025.114478
Yuefeng Yang
A (di)graph Γ generates a commutative association scheme X if and only if the adjacency matrix of Γ generates the Bose-Mesner algebra of X. In [18, Theorem 1.1], Monzillo and Penjić proved that, except for amorphic symmetric association schemes, every 3-class association scheme can be generated by the adjacency matrix of a (di)graph. In this paper, we characterize when a commutative association scheme with exactly one pair of nonsymmetric relations can be generated by a digraph under certain assumptions. As an application, we show that each nonsymmetric 4-class association scheme can be generated by a digraph.
{"title":"Every nonsymmetric 4-class association scheme can be generated by a digraph","authors":"Yuefeng Yang","doi":"10.1016/j.disc.2025.114478","DOIUrl":"10.1016/j.disc.2025.114478","url":null,"abstract":"<div><div>A (di)graph Γ generates a commutative association scheme <span><math><mi>X</mi></math></span> if and only if the adjacency matrix of Γ generates the Bose-Mesner algebra of <span><math><mi>X</mi></math></span>. In <span><span>[18, Theorem 1.1]</span></span>, Monzillo and Penjić proved that, except for amorphic symmetric association schemes, every 3-class association scheme can be generated by the adjacency matrix of a (di)graph. In this paper, we characterize when a commutative association scheme with exactly one pair of nonsymmetric relations can be generated by a digraph under certain assumptions. As an application, we show that each nonsymmetric 4-class association scheme can be generated by a digraph.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 8","pages":"Article 114478"},"PeriodicalIF":0.7,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143563800","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On Steinerberger curvature and graph distance matrices
IF 0.7 3区 数学 Q2 MATHEMATICS Pub Date : 2025-03-07 DOI: 10.1016/j.disc.2025.114475
Wei-Chia Chen , Mao-Pei Tsui
Steinerberger proposed a notion of curvature on graphs involving the graph distance matrix (J. Graph Theory, 2023). We show that nonnegative curvature is almost preserved under three graph operations. We characterize the distance matrix and its null space after adding an edge between two graphs. Let D be the graph distance matrix and 1 be the all-one vector. We provide a way to construct graphs so that the linear system Dx=1 does not have a solution.
{"title":"On Steinerberger curvature and graph distance matrices","authors":"Wei-Chia Chen ,&nbsp;Mao-Pei Tsui","doi":"10.1016/j.disc.2025.114475","DOIUrl":"10.1016/j.disc.2025.114475","url":null,"abstract":"<div><div>Steinerberger proposed a notion of curvature on graphs involving the graph distance matrix (J. Graph Theory, 2023). We show that nonnegative curvature is almost preserved under three graph operations. We characterize the distance matrix and its null space after adding an edge between two graphs. Let <em>D</em> be the graph distance matrix and <strong>1</strong> be the all-one vector. We provide a way to construct graphs so that the linear system <span><math><mi>D</mi><mi>x</mi><mo>=</mo><mn>1</mn></math></span> does not have a solution.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 8","pages":"Article 114475"},"PeriodicalIF":0.7,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143563864","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Proof of a conjecture on connectivity keeping odd paths in k-connected bipartite graphs
IF 0.7 3区 数学 Q2 MATHEMATICS Pub Date : 2025-03-07 DOI: 10.1016/j.disc.2025.114476
Qing Yang, Yingzhi Tian
Luo, Tian and Wu (2022) conjectured that for any tree T with bipartition X and Y, every k-connected bipartite graph G with minimum degree at least k+t, where t=max{|X|,|Y|}, contains a tree TT such that GV(T) is still k-connected. Note that t=m2 when the tree T is the path with order m. In this paper, we prove that every k-connected bipartite graph G with minimum degree at least k+m+12 contains a path P of order m such that GV(P) remains k-connected. This shows that the conjecture is true for paths with odd order. For paths with even order, the minimum degree bound in this paper is the bound in the conjecture plus one.
{"title":"Proof of a conjecture on connectivity keeping odd paths in k-connected bipartite graphs","authors":"Qing Yang,&nbsp;Yingzhi Tian","doi":"10.1016/j.disc.2025.114476","DOIUrl":"10.1016/j.disc.2025.114476","url":null,"abstract":"<div><div>Luo, Tian and Wu (2022) conjectured that for any tree <em>T</em> with bipartition <em>X</em> and <em>Y</em>, every <em>k</em>-connected bipartite graph <em>G</em> with minimum degree at least <span><math><mi>k</mi><mo>+</mo><mi>t</mi></math></span>, where <span><math><mi>t</mi><mo>=</mo><mi>max</mi><mo>⁡</mo><mo>{</mo><mo>|</mo><mi>X</mi><mo>|</mo><mo>,</mo><mo>|</mo><mi>Y</mi><mo>|</mo><mo>}</mo></math></span>, contains a tree <span><math><msup><mrow><mi>T</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>≅</mo><mi>T</mi></math></span> such that <span><math><mi>G</mi><mo>−</mo><mi>V</mi><mo>(</mo><msup><mrow><mi>T</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>)</mo></math></span> is still <em>k</em>-connected. Note that <span><math><mi>t</mi><mo>=</mo><mo>⌈</mo><mfrac><mrow><mi>m</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>⌉</mo></math></span> when the tree <em>T</em> is the path with order <em>m</em>. In this paper, we prove that every <em>k</em>-connected bipartite graph <em>G</em> with minimum degree at least <span><math><mi>k</mi><mo>+</mo><mo>⌈</mo><mfrac><mrow><mi>m</mi><mo>+</mo><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>⌉</mo></math></span> contains a path <em>P</em> of order <em>m</em> such that <span><math><mi>G</mi><mo>−</mo><mi>V</mi><mo>(</mo><mi>P</mi><mo>)</mo></math></span> remains <em>k</em>-connected. This shows that the conjecture is true for paths with odd order. For paths with even order, the minimum degree bound in this paper is the bound in the conjecture plus one.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 8","pages":"Article 114476"},"PeriodicalIF":0.7,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143563866","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Induced saturation for complete bipartite posets
IF 0.7 3区 数学 Q2 MATHEMATICS Pub Date : 2025-03-05 DOI: 10.1016/j.disc.2025.114462
Dingyuan Liu
Given s,tN, a complete bipartite poset Ks,t is a poset whose Hasse diagram consists of s pairwise incomparable vertices in the upper layer and t pairwise incomparable vertices in the lower layer, such that every vertex in the upper layer is larger than all vertices in the lower layer. A family F2[n] is called induced Ks,t-saturated if (F,) contains no induced copy of Ks,t, whereas adding any set from 2[n]F to F creates an induced Ks,t. Let sat(n,Ks,t) denote the smallest size of an induced Ks,t-saturated family F2[n]. It was conjectured that sat(n,Ks,t) is superlinear in n for certain values of s and t. In this paper, we show that sat(n,Ks,t)=O(n) for all fixed s,tN. Moreover, we prove a linear lower bound on sat(n,P) for a large class of posets P, particularly for Ks,2 with sN.
{"title":"Induced saturation for complete bipartite posets","authors":"Dingyuan Liu","doi":"10.1016/j.disc.2025.114462","DOIUrl":"10.1016/j.disc.2025.114462","url":null,"abstract":"<div><div>Given <span><math><mi>s</mi><mo>,</mo><mi>t</mi><mo>∈</mo><mi>N</mi></math></span>, a complete bipartite poset <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>s</mi><mo>,</mo><mi>t</mi></mrow></msub></math></span> is a poset whose Hasse diagram consists of <em>s</em> pairwise incomparable vertices in the upper layer and <em>t</em> pairwise incomparable vertices in the lower layer, such that every vertex in the upper layer is larger than all vertices in the lower layer. A family <span><math><mi>F</mi><mo>⊆</mo><msup><mrow><mn>2</mn></mrow><mrow><mo>[</mo><mi>n</mi><mo>]</mo></mrow></msup></math></span> is called induced <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>s</mi><mo>,</mo><mi>t</mi></mrow></msub></math></span>-saturated if <span><math><mo>(</mo><mi>F</mi><mo>,</mo><mo>⊆</mo><mo>)</mo></math></span> contains no induced copy of <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>s</mi><mo>,</mo><mi>t</mi></mrow></msub></math></span>, whereas adding any set from <span><math><msup><mrow><mn>2</mn></mrow><mrow><mo>[</mo><mi>n</mi><mo>]</mo></mrow></msup><mo>﹨</mo><mi>F</mi></math></span> to <span><math><mi>F</mi></math></span> creates an induced <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>s</mi><mo>,</mo><mi>t</mi></mrow></msub></math></span>. Let <span><math><msup><mrow><mi>sat</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>(</mo><mi>n</mi><mo>,</mo><msub><mrow><mi>K</mi></mrow><mrow><mi>s</mi><mo>,</mo><mi>t</mi></mrow></msub><mo>)</mo></math></span> denote the smallest size of an induced <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>s</mi><mo>,</mo><mi>t</mi></mrow></msub></math></span>-saturated family <span><math><mi>F</mi><mo>⊆</mo><msup><mrow><mn>2</mn></mrow><mrow><mo>[</mo><mi>n</mi><mo>]</mo></mrow></msup></math></span>. It was conjectured that <span><math><msup><mrow><mi>sat</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>(</mo><mi>n</mi><mo>,</mo><msub><mrow><mi>K</mi></mrow><mrow><mi>s</mi><mo>,</mo><mi>t</mi></mrow></msub><mo>)</mo></math></span> is superlinear in <em>n</em> for certain values of <em>s</em> and <em>t</em>. In this paper, we show that <span><math><msup><mrow><mi>sat</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>(</mo><mi>n</mi><mo>,</mo><msub><mrow><mi>K</mi></mrow><mrow><mi>s</mi><mo>,</mo><mi>t</mi></mrow></msub><mo>)</mo><mo>=</mo><mi>O</mi><mo>(</mo><mi>n</mi><mo>)</mo></math></span> for all fixed <span><math><mi>s</mi><mo>,</mo><mi>t</mi><mo>∈</mo><mi>N</mi></math></span>. Moreover, we prove a linear lower bound on <span><math><msup><mrow><mi>sat</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>(</mo><mi>n</mi><mo>,</mo><mi>P</mi><mo>)</mo></math></span> for a large class of posets <span><math><mi>P</mi></math></span>, particularly for <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>s</mi><mo>,</mo><mn>2</mn></mrow></msub></math></span> with <span><math><mi>s</mi><mo>∈</mo><mi>N</mi></math></span>.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 7","pages":"Article 114462"},"PeriodicalIF":0.7,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143549779","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Ramsey numbers for certain large trees of order n with maximum degree at most n − 6 versus the wheel of order nine
IF 0.7 3区 数学 Q2 MATHEMATICS Pub Date : 2025-03-04 DOI: 10.1016/j.disc.2025.114461
Thomas Britz , Zhi Yee Chng , Kok Bin Wong
For a fixed positive integer k5, the Ramsey numbers R(Tn,W8) are determined for the tree Tn of sufficiently large order n and maximum degree Δ(Tn)=nk1. This result provides a partial proof for the conjecture, due to Chen, Zhang and Zhang and to Hafidh and Baskoro, that R(Tn,Wm)=2n1 for each tree Tn of order nm1 with Δ(Tn)nm+2 when m4 is even, for the case when m=8 and n is sufficiently large.
{"title":"The Ramsey numbers for certain large trees of order n with maximum degree at most n − 6 versus the wheel of order nine","authors":"Thomas Britz ,&nbsp;Zhi Yee Chng ,&nbsp;Kok Bin Wong","doi":"10.1016/j.disc.2025.114461","DOIUrl":"10.1016/j.disc.2025.114461","url":null,"abstract":"<div><div>For a fixed positive integer <span><math><mi>k</mi><mo>≥</mo><mn>5</mn></math></span>, the Ramsey numbers <span><math><mi>R</mi><mo>(</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>,</mo><msub><mrow><mi>W</mi></mrow><mrow><mn>8</mn></mrow></msub><mo>)</mo></math></span> are determined for the tree <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> of sufficiently large order <em>n</em> and maximum degree <span><math><mi>Δ</mi><mo>(</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo><mo>=</mo><mi>n</mi><mo>−</mo><mi>k</mi><mo>−</mo><mn>1</mn></math></span>. This result provides a partial proof for the conjecture, due to Chen, Zhang and Zhang and to Hafidh and Baskoro, that <span><math><mi>R</mi><mo>(</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>,</mo><msub><mrow><mi>W</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>)</mo><mo>=</mo><mn>2</mn><mi>n</mi><mo>−</mo><mn>1</mn></math></span> for each tree <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> of order <span><math><mi>n</mi><mo>≥</mo><mi>m</mi><mo>−</mo><mn>1</mn></math></span> with <span><math><mi>Δ</mi><mo>(</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo><mo>≤</mo><mi>n</mi><mo>−</mo><mi>m</mi><mo>+</mo><mn>2</mn></math></span> when <span><math><mi>m</mi><mo>≥</mo><mn>4</mn></math></span> is even, for the case when <span><math><mi>m</mi><mo>=</mo><mn>8</mn></math></span> and <em>n</em> is sufficiently large.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 7","pages":"Article 114461"},"PeriodicalIF":0.7,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143535040","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A large minimal blocker for 123-avoiding permutations
IF 0.7 3区 数学 Q2 MATHEMATICS Pub Date : 2025-03-04 DOI: 10.1016/j.disc.2025.114463
Yaroslav Shitov
<div><div>A set <span><math><mi>B</mi><mo>⊆</mo><mo>{</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>n</mi><mo>}</mo><mo>×</mo><mo>{</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>n</mi><mo>}</mo></math></span> is a <em>blocker of</em> a subset <span><math><msub><mrow><mi>Q</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> of the symmetric group <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> if every permutation <span><math><mi>σ</mi><mo>∈</mo><msub><mrow><mi>Q</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> allows an index <em>i</em> with <span><math><mo>(</mo><mi>i</mi><mo>,</mo><msub><mrow><mi>σ</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>)</mo><mo>∈</mo><mi>B</mi></math></span>. Bennett, Brualdi and Cao conjectured that <span><math><mo>⌈</mo><mo>(</mo><mi>n</mi><mo>+</mo><mn>1</mn><mo>)</mo><mo>/</mo><mn>2</mn><mo>⌉</mo><mo>⋅</mo><mo>⌊</mo><mo>(</mo><mi>n</mi><mo>+</mo><mn>1</mn><mo>)</mo><mo>/</mo><mn>2</mn><mo>⌋</mo></math></span> is an upper bound for the sizes of the inclusion minimal blockers of the family of 123-<em>avoiding</em> permutations, which are those <span><math><mi>σ</mi><mo>∈</mo><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> for which <span><math><mo>(</mo><msub><mrow><mi>σ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>σ</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></math></span> has no increasing subsequence of the length three. We show that<span><span><span><math><mi>B</mi><mo>=</mo><mrow><mo>(</mo><mtable><mtr><mtd><mn>0</mn><mspace></mspace></mtd><mtd><mn>0</mn><mspace></mspace></mtd><mtd><mn>0</mn><mspace></mspace></mtd><mtd><mn>0</mn><mspace></mspace></mtd><mtd><mo>⁎</mo><mspace></mspace></mtd><mtd><mn>0</mn><mspace></mspace></mtd><mtd><mo>⁎</mo></mtd></mtr><mtr><mtd><mn>0</mn><mspace></mspace></mtd><mtd><mn>0</mn><mspace></mspace></mtd><mtd><mo>⁎</mo><mspace></mspace></mtd><mtd><mo>⁎</mo><mspace></mspace></mtd><mtd><mn>0</mn><mspace></mspace></mtd><mtd><mn>0</mn><mspace></mspace></mtd><mtd><mo>⁎</mo></mtd></mtr><mtr><mtd><mn>0</mn><mspace></mspace></mtd><mtd><mn>0</mn><mspace></mspace></mtd><mtd><mn>0</mn><mspace></mspace></mtd><mtd><mn>0</mn><mspace></mspace></mtd><mtd><mn>0</mn><mspace></mspace></mtd><mtd><mn>0</mn><mspace></mspace></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>0</mn><mspace></mspace></mtd><mtd><mo>⁎</mo><mspace></mspace></mtd><mtd><mn>0</mn><mspace></mspace></mtd><mtd><mo>⁎</mo><mspace></mspace></mtd><mtd><mo>⁎</mo><mspace></mspace></mtd><mtd><mn>0</mn><mspace></mspace></mtd><mtd><mo>⁎</mo></mtd></mtr><mtr><mtd><mn>0</mn><mspace></mspace></mtd><mtd><mn>0</mn><mspace></mspace></mtd><mtd><mn>0</mn><mspace></mspace></mtd><mtd><mn>0</mn><mspace></mspace></mtd><mtd><mo>⁎</mo><mspace></mspace></mtd><mtd><mn>0</mn><mspace></mspace></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>0</mn><mspace></mspace></mtd><mtd><mo>⁎</mo><mspace></mspace></mtd><mtd><mn>0</mn><mspace></mspace></m
{"title":"A large minimal blocker for 123-avoiding permutations","authors":"Yaroslav Shitov","doi":"10.1016/j.disc.2025.114463","DOIUrl":"10.1016/j.disc.2025.114463","url":null,"abstract":"&lt;div&gt;&lt;div&gt;A set &lt;span&gt;&lt;math&gt;&lt;mi&gt;B&lt;/mi&gt;&lt;mo&gt;⊆&lt;/mo&gt;&lt;mo&gt;{&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mo&gt;…&lt;/mo&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;}&lt;/mo&gt;&lt;mo&gt;×&lt;/mo&gt;&lt;mo&gt;{&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mo&gt;…&lt;/mo&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;}&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt; is a &lt;em&gt;blocker of&lt;/em&gt; a subset &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;Q&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; of the symmetric group &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;S&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; if every permutation &lt;span&gt;&lt;math&gt;&lt;mi&gt;σ&lt;/mi&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;Q&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; allows an index &lt;em&gt;i&lt;/em&gt; with &lt;span&gt;&lt;math&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;σ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;mi&gt;B&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;. Bennett, Brualdi and Cao conjectured that &lt;span&gt;&lt;math&gt;&lt;mo&gt;⌈&lt;/mo&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;/&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mo&gt;⌉&lt;/mo&gt;&lt;mo&gt;⋅&lt;/mo&gt;&lt;mo&gt;⌊&lt;/mo&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;/&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mo&gt;⌋&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt; is an upper bound for the sizes of the inclusion minimal blockers of the family of 123-&lt;em&gt;avoiding&lt;/em&gt; permutations, which are those &lt;span&gt;&lt;math&gt;&lt;mi&gt;σ&lt;/mi&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;S&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; for which &lt;span&gt;&lt;math&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;σ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mo&gt;…&lt;/mo&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;σ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt; has no increasing subsequence of the length three. We show that&lt;span&gt;&lt;span&gt;&lt;span&gt;&lt;math&gt;&lt;mi&gt;B&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mtable&gt;&lt;mtr&gt;&lt;mtd&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;/mtd&gt;&lt;mtd&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;/mtd&gt;&lt;mtd&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;/mtd&gt;&lt;mtd&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;/mtd&gt;&lt;mtd&gt;&lt;mo&gt;⁎&lt;/mo&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;/mtd&gt;&lt;mtd&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;/mtd&gt;&lt;mtd&gt;&lt;mo&gt;⁎&lt;/mo&gt;&lt;/mtd&gt;&lt;/mtr&gt;&lt;mtr&gt;&lt;mtd&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;/mtd&gt;&lt;mtd&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;/mtd&gt;&lt;mtd&gt;&lt;mo&gt;⁎&lt;/mo&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;/mtd&gt;&lt;mtd&gt;&lt;mo&gt;⁎&lt;/mo&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;/mtd&gt;&lt;mtd&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;/mtd&gt;&lt;mtd&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;/mtd&gt;&lt;mtd&gt;&lt;mo&gt;⁎&lt;/mo&gt;&lt;/mtd&gt;&lt;/mtr&gt;&lt;mtr&gt;&lt;mtd&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;/mtd&gt;&lt;mtd&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;/mtd&gt;&lt;mtd&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;/mtd&gt;&lt;mtd&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;/mtd&gt;&lt;mtd&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;/mtd&gt;&lt;mtd&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;/mtd&gt;&lt;mtd&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mtd&gt;&lt;/mtr&gt;&lt;mtr&gt;&lt;mtd&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;/mtd&gt;&lt;mtd&gt;&lt;mo&gt;⁎&lt;/mo&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;/mtd&gt;&lt;mtd&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;/mtd&gt;&lt;mtd&gt;&lt;mo&gt;⁎&lt;/mo&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;/mtd&gt;&lt;mtd&gt;&lt;mo&gt;⁎&lt;/mo&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;/mtd&gt;&lt;mtd&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;/mtd&gt;&lt;mtd&gt;&lt;mo&gt;⁎&lt;/mo&gt;&lt;/mtd&gt;&lt;/mtr&gt;&lt;mtr&gt;&lt;mtd&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;/mtd&gt;&lt;mtd&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;/mtd&gt;&lt;mtd&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;/mtd&gt;&lt;mtd&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;/mtd&gt;&lt;mtd&gt;&lt;mo&gt;⁎&lt;/mo&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;/mtd&gt;&lt;mtd&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;/mtd&gt;&lt;mtd&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mtd&gt;&lt;/mtr&gt;&lt;mtr&gt;&lt;mtd&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;/mtd&gt;&lt;mtd&gt;&lt;mo&gt;⁎&lt;/mo&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;/mtd&gt;&lt;mtd&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;/m","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 7","pages":"Article 114463"},"PeriodicalIF":0.7,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143535042","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Several classes of minimal linear codes from vectorial Boolean functions and p-ary functions
IF 0.7 3区 数学 Q2 MATHEMATICS Pub Date : 2025-03-04 DOI: 10.1016/j.disc.2025.114464
Wengang Jin, Kangquan Li, Longjiang Qu
Minimal linear codes are widely used in secret sharing schemes and secure two-party computation. Most of the minimal linear codes constructed satisfy the Ashikhmin-Barg (AB for short) condition. However, up to now, only a small classes of minimal linear codes violating the AB condition have been presented in the literature. In this paper, we are devoted to constructing more classes of minimal linear codes over the finite field Fp that violate the AB condition and have new parameters. First, we provide several classes of minimal linear codes violating the AB condition from vectorial Boolean functions and determine their weight distributions. Then, we obtain new p-ary functions over the finite fields Fp with p an odd prime and determine their Walsh spectrum distributions. Finally, the resulted p-ary functions are employed to construct several classes of linear codes with two to four weights. In these codes, one class is minimal and violates the AB condition, and two classes satisfy the AB condition.
{"title":"Several classes of minimal linear codes from vectorial Boolean functions and p-ary functions","authors":"Wengang Jin,&nbsp;Kangquan Li,&nbsp;Longjiang Qu","doi":"10.1016/j.disc.2025.114464","DOIUrl":"10.1016/j.disc.2025.114464","url":null,"abstract":"<div><div>Minimal linear codes are widely used in secret sharing schemes and secure two-party computation. Most of the minimal linear codes constructed satisfy the Ashikhmin-Barg (AB for short) condition. However, up to now, only a small classes of minimal linear codes violating the AB condition have been presented in the literature. In this paper, we are devoted to constructing more classes of minimal linear codes over the finite field <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span> that violate the AB condition and have new parameters. First, we provide several classes of minimal linear codes violating the AB condition from vectorial Boolean functions and determine their weight distributions. Then, we obtain new <em>p</em>-ary functions over the finite fields <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span> with <em>p</em> an odd prime and determine their Walsh spectrum distributions. Finally, the resulted <em>p</em>-ary functions are employed to construct several classes of linear codes with two to four weights. In these codes, one class is minimal and violates the AB condition, and two classes satisfy the AB condition.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 7","pages":"Article 114464"},"PeriodicalIF":0.7,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143535041","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Discrete Mathematics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1