{"title":"Crystallinity-dependent surface oxidation in Cu Films revealed by a visualization of surface plasmon","authors":"M.S. Kim , J.S. Kim , B.N. Chae , J.S. Lee","doi":"10.1016/j.cap.2024.12.010","DOIUrl":null,"url":null,"abstract":"<div><div>We visualized surface plasmon in poly- and single-crystalline Cu films by exploiting nano-infrared imaging. We clearly observed oscillating patterns in both films which are attributed to the surface plasmon launched from the film edge and the atomic force microscope tip. The surface plasmons observed for poly- and single-crystalline Cu films have different oscillating periods for the given wavelength of incident beam, and different slopes of the surface plasmon dispersion. These behaviors could be understood by a corresponding difference in dielectric constants of the dielectric layer on top of the Cu films; a relatively smaller dielectric constant is required to fit the surface plasmon's dispersion relation of the single-crystalline Cu film implying that the oxidized layer formed on the Cu film surface is thinner than for the poly-crystalline film. This result is in good agreement with the previous observation about the robustness of the single-crystalline Cu film against the surface oxidation.</div></div>","PeriodicalId":11037,"journal":{"name":"Current Applied Physics","volume":"71 ","pages":"Pages 80-84"},"PeriodicalIF":2.4000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Applied Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S156717392400292X","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
We visualized surface plasmon in poly- and single-crystalline Cu films by exploiting nano-infrared imaging. We clearly observed oscillating patterns in both films which are attributed to the surface plasmon launched from the film edge and the atomic force microscope tip. The surface plasmons observed for poly- and single-crystalline Cu films have different oscillating periods for the given wavelength of incident beam, and different slopes of the surface plasmon dispersion. These behaviors could be understood by a corresponding difference in dielectric constants of the dielectric layer on top of the Cu films; a relatively smaller dielectric constant is required to fit the surface plasmon's dispersion relation of the single-crystalline Cu film implying that the oxidized layer formed on the Cu film surface is thinner than for the poly-crystalline film. This result is in good agreement with the previous observation about the robustness of the single-crystalline Cu film against the surface oxidation.
期刊介绍:
Current Applied Physics (Curr. Appl. Phys.) is a monthly published international journal covering all the fields of applied science investigating the physics of the advanced materials for future applications.
Other areas covered: Experimental and theoretical aspects of advanced materials and devices dealing with synthesis or structural chemistry, physical and electronic properties, photonics, engineering applications, and uniquely pertinent measurement or analytical techniques.
Current Applied Physics, published since 2001, covers physics, chemistry and materials science, including bio-materials, with their engineering aspects. It is a truly interdisciplinary journal opening a forum for scientists of all related fields, a unique point of the journal discriminating it from other worldwide and/or Pacific Rim applied physics journals.
Regular research papers, letters and review articles with contents meeting the scope of the journal will be considered for publication after peer review.
The Journal is owned by the Korean Physical Society.