Integrating direct and indirect views for group recommendation: An inter- and intra-view contrastive learning method

IF 6.7 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Decision Support Systems Pub Date : 2025-02-01 DOI:10.1016/j.dss.2024.114380
Xiangyu Li , Xunhua Guo , Guoqing Chen
{"title":"Integrating direct and indirect views for group recommendation: An inter- and intra-view contrastive learning method","authors":"Xiangyu Li ,&nbsp;Xunhua Guo ,&nbsp;Guoqing Chen","doi":"10.1016/j.dss.2024.114380","DOIUrl":null,"url":null,"abstract":"<div><div>The growing popularity of online social networking has made it increasingly important to develop group recommender systems (RS) for delivering personalized services to the members of user groups. However, owing to the sparsity of data on group–item interactions (G–I interactions), existing group recommendation methods have concentrated on modeling user–item interactions (U–I interactions), which has limited the validity of the extracted group preferences. We propose a novel inter- and intra-view contrastive learning (I2VC) method for group recommendation, focusing on combining the direct view concerning group–item records and the indirect view concerning user–item records. The proposed method features a contrastive learning mechanism that incorporates two strategies (i.e., inter-view learning and intra-view learning) to overcome challenges in achieving the cross-view matching of the same group and the within-view discrimination among different groups. We empirically evaluate the proposed method using two real-world datasets. The results show that our method is more effective than other group recommendation methods. In addition, our findings show that the I2VC method is capable of boosting the alignment of strongly correlated group embeddings and the dispersion of weakly correlated ones, further demonstrating its effectiveness in view collaboration.</div></div>","PeriodicalId":55181,"journal":{"name":"Decision Support Systems","volume":"189 ","pages":"Article 114380"},"PeriodicalIF":6.7000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Decision Support Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167923624002136","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

The growing popularity of online social networking has made it increasingly important to develop group recommender systems (RS) for delivering personalized services to the members of user groups. However, owing to the sparsity of data on group–item interactions (G–I interactions), existing group recommendation methods have concentrated on modeling user–item interactions (U–I interactions), which has limited the validity of the extracted group preferences. We propose a novel inter- and intra-view contrastive learning (I2VC) method for group recommendation, focusing on combining the direct view concerning group–item records and the indirect view concerning user–item records. The proposed method features a contrastive learning mechanism that incorporates two strategies (i.e., inter-view learning and intra-view learning) to overcome challenges in achieving the cross-view matching of the same group and the within-view discrimination among different groups. We empirically evaluate the proposed method using two real-world datasets. The results show that our method is more effective than other group recommendation methods. In addition, our findings show that the I2VC method is capable of boosting the alignment of strongly correlated group embeddings and the dispersion of weakly correlated ones, further demonstrating its effectiveness in view collaboration.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Decision Support Systems
Decision Support Systems 工程技术-计算机:人工智能
CiteScore
14.70
自引率
6.70%
发文量
119
审稿时长
13 months
期刊介绍: The common thread of articles published in Decision Support Systems is their relevance to theoretical and technical issues in the support of enhanced decision making. The areas addressed may include foundations, functionality, interfaces, implementation, impacts, and evaluation of decision support systems (DSSs).
期刊最新文献
Re-evaluating causal inference: Bias reduction in confounder-effect modifier scenarios Editorial Board Optimal advertising strategy for streaming platforms: Whether to purchase external consumer data Balancing the costs and benefits of resilience-based decision making Are helpful reviews indeed helpful? Analyzing the information and economic value of contextual cues in user-generated images
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1