Projecting and estimating HVAC energy savings from correcting control faults: Comparison between physical and virtual metering approaches

IF 6.6 2区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY Energy and Buildings Pub Date : 2025-02-01 DOI:10.1016/j.enbuild.2024.115169
Andre A. Markus , Jayson Bursill , H. Burak Gunay , Brodie W. Hobson
{"title":"Projecting and estimating HVAC energy savings from correcting control faults: Comparison between physical and virtual metering approaches","authors":"Andre A. Markus ,&nbsp;Jayson Bursill ,&nbsp;H. Burak Gunay ,&nbsp;Brodie W. Hobson","doi":"10.1016/j.enbuild.2024.115169","DOIUrl":null,"url":null,"abstract":"<div><div>Fault-impact analysis (FIA) in heating, ventilation, and air conditioning (HVAC) systems involves forecasting system loads in the absence of equipment malfunction and inappropriate sequences of operations with the intention of setting a target for optimal operating energy use and encouraging and augmenting fault correction. Fault correction is an ongoing and resource-intensive endeavor for operations personnel, often motivated by occupant complaints rather than to mitigate excessive operating energy use. Thus, projecting the energy-use impact of faults is imperative to improving building energy efficiency as it leverages the potential to reduce energy use for real-time operational decision-making. Thermal energy meters (i.e., physical meters) can provide post-correction validation by quantifying the energy-use impact of faults, though are incapable of projecting this information before faults are corrected and providing motivation. Additionally, their installation and maintenance costs in existing buildings are often prohibitive. Virtual meters (VMs) which leverage HVAC controls data offer a cost-effective alternative to physical meters. Furthermore, inverse-model (IM)-based VMs enable scalable FIA by employing derived IMs at the system and zone level to emulate alternative control scenarios. This paper presents the first ever field implementation of FIA-capable VM algorithms. An automated and BAS-integrated VM algorithm was deployed in a living-lab facility in Ottawa, Canada, and the VM-estimated energy-use impact of correcting common soft faults is presented and compared with savings reported by thermal meters and savings projected by the FIA. For combined system- and zone-level heating, VMs estimated 85% of the measured energy-use savings, and a 65% reduction in energy use was projected prior to correcting faults where a 62% reduction was realized after faults were corrected. VMs can appropriately assess and project energy savings for fault correction so long as the method to baseline pre-correction energy use persists after correction.</div></div>","PeriodicalId":11641,"journal":{"name":"Energy and Buildings","volume":"328 ","pages":"Article 115169"},"PeriodicalIF":6.6000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy and Buildings","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378778824012854","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Fault-impact analysis (FIA) in heating, ventilation, and air conditioning (HVAC) systems involves forecasting system loads in the absence of equipment malfunction and inappropriate sequences of operations with the intention of setting a target for optimal operating energy use and encouraging and augmenting fault correction. Fault correction is an ongoing and resource-intensive endeavor for operations personnel, often motivated by occupant complaints rather than to mitigate excessive operating energy use. Thus, projecting the energy-use impact of faults is imperative to improving building energy efficiency as it leverages the potential to reduce energy use for real-time operational decision-making. Thermal energy meters (i.e., physical meters) can provide post-correction validation by quantifying the energy-use impact of faults, though are incapable of projecting this information before faults are corrected and providing motivation. Additionally, their installation and maintenance costs in existing buildings are often prohibitive. Virtual meters (VMs) which leverage HVAC controls data offer a cost-effective alternative to physical meters. Furthermore, inverse-model (IM)-based VMs enable scalable FIA by employing derived IMs at the system and zone level to emulate alternative control scenarios. This paper presents the first ever field implementation of FIA-capable VM algorithms. An automated and BAS-integrated VM algorithm was deployed in a living-lab facility in Ottawa, Canada, and the VM-estimated energy-use impact of correcting common soft faults is presented and compared with savings reported by thermal meters and savings projected by the FIA. For combined system- and zone-level heating, VMs estimated 85% of the measured energy-use savings, and a 65% reduction in energy use was projected prior to correcting faults where a 62% reduction was realized after faults were corrected. VMs can appropriately assess and project energy savings for fault correction so long as the method to baseline pre-correction energy use persists after correction.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Energy and Buildings
Energy and Buildings 工程技术-工程:土木
CiteScore
12.70
自引率
11.90%
发文量
863
审稿时长
38 days
期刊介绍: An international journal devoted to investigations of energy use and efficiency in buildings Energy and Buildings is an international journal publishing articles with explicit links to energy use in buildings. The aim is to present new research results, and new proven practice aimed at reducing the energy needs of a building and improving indoor environment quality.
期刊最新文献
A study of occupant performance under varying indoor thermal conditions during summer in India Students’ thermal and indoor air quality perception in secondary schools in a Mediterranean climate Editorial Board Frost resilient energy recovery ventilation system for dwellings in Canada’s North and Arctic: A comparative study between a regenerative dual core and conventional single core systems Dynamic life cycle environmental impact assessment for urban built environment based on BIM and GIS
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1