Multi-scale simulation for energy release performance of carbonation process in solar-driven calcium-looping: From grain to reactor

IF 16.3 1区 工程技术 Q1 ENERGY & FUELS Renewable and Sustainable Energy Reviews Pub Date : 2024-12-16 DOI:10.1016/j.rser.2024.115202
Chao Song , Jinbo Che , Xiaoyu Yang , Rui Wang , Yinshi Li
{"title":"Multi-scale simulation for energy release performance of carbonation process in solar-driven calcium-looping: From grain to reactor","authors":"Chao Song ,&nbsp;Jinbo Che ,&nbsp;Xiaoyu Yang ,&nbsp;Rui Wang ,&nbsp;Yinshi Li","doi":"10.1016/j.rser.2024.115202","DOIUrl":null,"url":null,"abstract":"<div><div>Calcium-looping energy storage technology presents a promising potential to address the instability issues associated with the renewable energy sources (e.g. solar power). In this work, a fluidized bed is comprehensively analyzed as an energy release device. A multiscale method is proposed to investigate the mechanisms involved in the reaction and heat release during the exothermic carbonation process, spanning from the grain scale to the reactor scale. The accuracy of the model in terms of reaction kinetics and heat transfer is rigorously validated against experimental results. It is revealed that the carbonation reaction exhibits three distinct stages within 40 s, characterized by changes in reaction rate: the rapid reaction stage, the transition stage, and the equilibrium stage. The rapid reaction stage experiences significant fluctuations in the reaction rate due to factors such as gas-solid temperature distribution, reactant gas concentration distribution, and the phenomenon of gas back-mixing. Observations in the reactor show distinct zones, including the bubble zone, dense phase zone, splash zone, and freeboard zone, where bubbles exhibit a cap-shaped morphology. The reaction rate near the bubbles is approximately 10 times higher than that in the dense phase zone, highlighting the critical role of dense and small bubbles in facilitating mass transfer during carbonation. Additionally, grain size significantly influences the carbonation process, with smaller grain sizes promoting the reaction. This study has established a fundamental mechanism of heat release during the carbonation reaction, providing a solid foundation for future investigations into the carbonation-calcination looping process.</div></div>","PeriodicalId":418,"journal":{"name":"Renewable and Sustainable Energy Reviews","volume":"210 ","pages":"Article 115202"},"PeriodicalIF":16.3000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Renewable and Sustainable Energy Reviews","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1364032124009286","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Calcium-looping energy storage technology presents a promising potential to address the instability issues associated with the renewable energy sources (e.g. solar power). In this work, a fluidized bed is comprehensively analyzed as an energy release device. A multiscale method is proposed to investigate the mechanisms involved in the reaction and heat release during the exothermic carbonation process, spanning from the grain scale to the reactor scale. The accuracy of the model in terms of reaction kinetics and heat transfer is rigorously validated against experimental results. It is revealed that the carbonation reaction exhibits three distinct stages within 40 s, characterized by changes in reaction rate: the rapid reaction stage, the transition stage, and the equilibrium stage. The rapid reaction stage experiences significant fluctuations in the reaction rate due to factors such as gas-solid temperature distribution, reactant gas concentration distribution, and the phenomenon of gas back-mixing. Observations in the reactor show distinct zones, including the bubble zone, dense phase zone, splash zone, and freeboard zone, where bubbles exhibit a cap-shaped morphology. The reaction rate near the bubbles is approximately 10 times higher than that in the dense phase zone, highlighting the critical role of dense and small bubbles in facilitating mass transfer during carbonation. Additionally, grain size significantly influences the carbonation process, with smaller grain sizes promoting the reaction. This study has established a fundamental mechanism of heat release during the carbonation reaction, providing a solid foundation for future investigations into the carbonation-calcination looping process.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Renewable and Sustainable Energy Reviews
Renewable and Sustainable Energy Reviews 工程技术-能源与燃料
CiteScore
31.20
自引率
5.70%
发文量
1055
审稿时长
62 days
期刊介绍: The mission of Renewable and Sustainable Energy Reviews is to disseminate the most compelling and pertinent critical insights in renewable and sustainable energy, fostering collaboration among the research community, private sector, and policy and decision makers. The journal aims to exchange challenges, solutions, innovative concepts, and technologies, contributing to sustainable development, the transition to a low-carbon future, and the attainment of emissions targets outlined by the United Nations Framework Convention on Climate Change. Renewable and Sustainable Energy Reviews publishes a diverse range of content, including review papers, original research, case studies, and analyses of new technologies, all featuring a substantial review component such as critique, comparison, or analysis. Introducing a distinctive paper type, Expert Insights, the journal presents commissioned mini-reviews authored by field leaders, addressing topics of significant interest. Case studies undergo consideration only if they showcase the work's applicability to other regions or contribute valuable insights to the broader field of renewable and sustainable energy. Notably, a bibliographic or literature review lacking critical analysis is deemed unsuitable for publication.
期刊最新文献
Editorial Board Anaerobic digestion of lignocellulosic biomass: Process intensification and artificial intelligence EV charging for multifamily housing: Review of evidence, methods, barriers, and opportunities Development of different frequency up-conversion components in vibration energy harvesters Potential for nano-enhanced molten salts in solar energy storage
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1