The industrial sector is crucial in optimizing energy consumption and achieving sustainable manufacturing. This study reviews the potential for integrating solar energy within the manufacturing industry using Discrete Event Simulation (DES). DES is motivated by its ability to model complex, variable processes and improve decision-making in energy integration scenarios. A systematic literature review using the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) methodology was conducted, focusing on existing methods and practices for energy utilization in the industrial context, particularly integrating renewable sources like solar energy. Thirty articles were comprehensively reviewed and categorized into three main research domains: energy efficiency, management, and consumption. A significant gap was identified in the literature regarding the integration of solar energy into DES models for industrial applications. This study highlights this gap and proposes research directions to address it, including incorporating solar variability forecasting models and evaluating the impact of solar PV integration on grid stability, power quality, and congestion management. The intermittent nature of solar power generation and demand variability are critical aspects that DES can effectively address, helping to quantify the matching of supply and demand. This research aims to contribute to developing a more sustainable and resilient industrial energy landscape.