Jing-Shou Zhang , Hong-Mei Xiao , Valérie Orsat , G.S.V. Raghavan , Mehdi Torki , Haibin Wang , Hui Wang
{"title":"Innovative green technology: Pulse cycle vacuum drying with carbon crystal heating poised to supplant conventional vacuum drying methods","authors":"Jing-Shou Zhang , Hong-Mei Xiao , Valérie Orsat , G.S.V. Raghavan , Mehdi Torki , Haibin Wang , Hui Wang","doi":"10.1016/j.rser.2024.115200","DOIUrl":null,"url":null,"abstract":"<div><div>Drying plays a crucial role in ensuring global food security by reducing the moisture content to ensure safe storage of agri-food products. This study aims to develop a carbon crystal heating - pulsed cycle vacuum drying (CH-PVD) equipment and improve its performance using alternating vacuum - normal pressure patterns and Carbon crystal infrared plates. The developed dryer was used to dehydrate garlic at 60–75 °C and compared with vacuum drying (VD) and vacuum freeze drying (VFD). At 65 °C, compared with VD, the developed dryer reduced drying time and carbon footprint by 32.55 % and 41.56 % respectively, enhanced energy efficiency by 68.10 %. The quality of the dried garlic slices obtained by CH-PVD was better than that of VD while it was worse than that obtained with VFD. However, the rehydration ratio of the dried garlic slices obtained by CH-PVD was 89.84 % higher than that of VFD. The energy analysis of the three dryers revealed that the vacuum pump was the most energy consuming component in CH-PVD and VD, while the cooling unit was the most energy consuming component in VFD. At the same drying temperature, heating in VD accounted for 48.30 % of the total energy consumption, while heating in CH-PVD accounted for only 5.02 %. Compared with VD and VFD, CH-PVD could effectively reduce greenhouse gas emissions and had a shorter simple payback period (0.38–0.81 years). Based on the results of this study, it can be concluded that the CH-PVD is a promising drying technology for potential application in the food industry.</div></div>","PeriodicalId":418,"journal":{"name":"Renewable and Sustainable Energy Reviews","volume":"210 ","pages":"Article 115200"},"PeriodicalIF":16.3000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Renewable and Sustainable Energy Reviews","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1364032124009262","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Drying plays a crucial role in ensuring global food security by reducing the moisture content to ensure safe storage of agri-food products. This study aims to develop a carbon crystal heating - pulsed cycle vacuum drying (CH-PVD) equipment and improve its performance using alternating vacuum - normal pressure patterns and Carbon crystal infrared plates. The developed dryer was used to dehydrate garlic at 60–75 °C and compared with vacuum drying (VD) and vacuum freeze drying (VFD). At 65 °C, compared with VD, the developed dryer reduced drying time and carbon footprint by 32.55 % and 41.56 % respectively, enhanced energy efficiency by 68.10 %. The quality of the dried garlic slices obtained by CH-PVD was better than that of VD while it was worse than that obtained with VFD. However, the rehydration ratio of the dried garlic slices obtained by CH-PVD was 89.84 % higher than that of VFD. The energy analysis of the three dryers revealed that the vacuum pump was the most energy consuming component in CH-PVD and VD, while the cooling unit was the most energy consuming component in VFD. At the same drying temperature, heating in VD accounted for 48.30 % of the total energy consumption, while heating in CH-PVD accounted for only 5.02 %. Compared with VD and VFD, CH-PVD could effectively reduce greenhouse gas emissions and had a shorter simple payback period (0.38–0.81 years). Based on the results of this study, it can be concluded that the CH-PVD is a promising drying technology for potential application in the food industry.
期刊介绍:
The mission of Renewable and Sustainable Energy Reviews is to disseminate the most compelling and pertinent critical insights in renewable and sustainable energy, fostering collaboration among the research community, private sector, and policy and decision makers. The journal aims to exchange challenges, solutions, innovative concepts, and technologies, contributing to sustainable development, the transition to a low-carbon future, and the attainment of emissions targets outlined by the United Nations Framework Convention on Climate Change.
Renewable and Sustainable Energy Reviews publishes a diverse range of content, including review papers, original research, case studies, and analyses of new technologies, all featuring a substantial review component such as critique, comparison, or analysis. Introducing a distinctive paper type, Expert Insights, the journal presents commissioned mini-reviews authored by field leaders, addressing topics of significant interest. Case studies undergo consideration only if they showcase the work's applicability to other regions or contribute valuable insights to the broader field of renewable and sustainable energy. Notably, a bibliographic or literature review lacking critical analysis is deemed unsuitable for publication.