Penalized estimation of finite mixture models

IF 9.9 3区 经济学 Q1 ECONOMICS Journal of Econometrics Pub Date : 2025-02-03 DOI:10.1016/j.jeconom.2025.105958
Sofya Budanova
{"title":"Penalized estimation of finite mixture models","authors":"Sofya Budanova","doi":"10.1016/j.jeconom.2025.105958","DOIUrl":null,"url":null,"abstract":"<div><div>Economists often model unobserved heterogeneity using finite mixtures. In practice, the number of mixture components is rarely known. Model parameters lack point-identification if the estimation includes too many components, thus invalidating the classic properties of maximum likelihood estimation. I propose a penalized likelihood method to estimate finite mixtures with an unknown number of components. The resulting Order-Selection-Consistent Estimator (OSCE) consistently estimates the true number of components and achieves oracle efficiency. This paper extends penalized estimation to models without point-identification and to mixtures with growing number of components. I apply the OSCE to estimate players’ rationality levels in a coordination game.</div></div>","PeriodicalId":15629,"journal":{"name":"Journal of Econometrics","volume":"249 ","pages":"Article 105958"},"PeriodicalIF":9.9000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Econometrics","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304407625000120","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

Abstract

Economists often model unobserved heterogeneity using finite mixtures. In practice, the number of mixture components is rarely known. Model parameters lack point-identification if the estimation includes too many components, thus invalidating the classic properties of maximum likelihood estimation. I propose a penalized likelihood method to estimate finite mixtures with an unknown number of components. The resulting Order-Selection-Consistent Estimator (OSCE) consistently estimates the true number of components and achieves oracle efficiency. This paper extends penalized estimation to models without point-identification and to mixtures with growing number of components. I apply the OSCE to estimate players’ rationality levels in a coordination game.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Econometrics
Journal of Econometrics 社会科学-数学跨学科应用
CiteScore
8.60
自引率
1.60%
发文量
220
审稿时长
3-8 weeks
期刊介绍: The Journal of Econometrics serves as an outlet for important, high quality, new research in both theoretical and applied econometrics. The scope of the Journal includes papers dealing with identification, estimation, testing, decision, and prediction issues encountered in economic research. Classical Bayesian statistics, and machine learning methods, are decidedly within the range of the Journal''s interests. The Annals of Econometrics is a supplement to the Journal of Econometrics.
期刊最新文献
On time-varying panel data models with time-varying interactive fixed effects Three-dimensional heterogeneous panel data models with multi-level interactive fixed effects Penalized estimation of finite mixture models Identification and estimation of a search model with heterogeneous consumers and firms Editorial Board
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1