{"title":"A novel technique to produce trimodal microstructure in low-carbon steel","authors":"Somayyeh Gholamalipour, Roohollah Jamaati, Seyed Jamal Hosseinipour","doi":"10.1016/j.mtla.2024.102318","DOIUrl":null,"url":null,"abstract":"<div><div>In this research, a novel technique (intercritical annealing, controlled cooling, cold rolling, and final annealing) to produce trimodal microstructure in low-carbon steel is proposed. After intercritical annealing, a cooling rate was used (30 °C/s) which led to the simultaneous formation of ferrite, martensite, and pearlite phases. After cold rolling (with the strains of 25 %, 50 %, and 75 %) and final annealing at 550 °C, recrystallization had not yet occurred in the microstructure of the 25 %+550 and 50 %+550 samples, while the microstructure of the 75 %+550 sample had completely undergone static recrystallization. A trimodal microstructure consisting of coarse grains (larger than 5 μm), fine grains (between 1 and 5 μm), and ultrafine grains (less than 1 μm) was formed in the 75 %+550 sample. Among the annealed sheets, the 75 %+550 sheet exhibited the highest hardness (217.5 HV), yield strength (686.1 MPa), and tensile strength (709.5 MPa), with an acceptable total elongation (11.3 %) due to the formation of trimodal microstructure and fine spherical θ-Fe<sub>3</sub>C particles. By increasing the strain (in both deformed and annealed samples), the central area became smaller, indicating a shift toward shear ductile fracture. The final annealing at 550 °C slightly increased the central area owing to the occurrence of restoration mechanisms.</div></div>","PeriodicalId":47623,"journal":{"name":"Materialia","volume":"39 ","pages":"Article 102318"},"PeriodicalIF":3.0000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materialia","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589152924003156","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In this research, a novel technique (intercritical annealing, controlled cooling, cold rolling, and final annealing) to produce trimodal microstructure in low-carbon steel is proposed. After intercritical annealing, a cooling rate was used (30 °C/s) which led to the simultaneous formation of ferrite, martensite, and pearlite phases. After cold rolling (with the strains of 25 %, 50 %, and 75 %) and final annealing at 550 °C, recrystallization had not yet occurred in the microstructure of the 25 %+550 and 50 %+550 samples, while the microstructure of the 75 %+550 sample had completely undergone static recrystallization. A trimodal microstructure consisting of coarse grains (larger than 5 μm), fine grains (between 1 and 5 μm), and ultrafine grains (less than 1 μm) was formed in the 75 %+550 sample. Among the annealed sheets, the 75 %+550 sheet exhibited the highest hardness (217.5 HV), yield strength (686.1 MPa), and tensile strength (709.5 MPa), with an acceptable total elongation (11.3 %) due to the formation of trimodal microstructure and fine spherical θ-Fe3C particles. By increasing the strain (in both deformed and annealed samples), the central area became smaller, indicating a shift toward shear ductile fracture. The final annealing at 550 °C slightly increased the central area owing to the occurrence of restoration mechanisms.
期刊介绍:
Materialia is a multidisciplinary journal of materials science and engineering that publishes original peer-reviewed research articles. Articles in Materialia advance the understanding of the relationship between processing, structure, property, and function of materials.
Materialia publishes full-length research articles, review articles, and letters (short communications). In addition to receiving direct submissions, Materialia also accepts transfers from Acta Materialia, Inc. partner journals. Materialia offers authors the choice to publish on an open access model (with author fee), or on a subscription model (with no author fee).