Enhancement in conduction loss induced by morphology engineering for excellent electromagnetic wave absorption

IF 8.4 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Journal of Materiomics Pub Date : 2024-08-08 DOI:10.1016/j.jmat.2024.100927
Qing Chang , Zijun Xie , Geng Chen , Zijing Li , Yujin Duan , Bin Shi , Hongjing Wu
{"title":"Enhancement in conduction loss induced by morphology engineering for excellent electromagnetic wave absorption","authors":"Qing Chang ,&nbsp;Zijun Xie ,&nbsp;Geng Chen ,&nbsp;Zijing Li ,&nbsp;Yujin Duan ,&nbsp;Bin Shi ,&nbsp;Hongjing Wu","doi":"10.1016/j.jmat.2024.100927","DOIUrl":null,"url":null,"abstract":"<div><div>Understanding the microstructure-property relationship from the microscopic and macroscopic perspectives, instead of semi-empirical rules, can facilitate the design of microcosmic morphology to adjust the impedance matching and dielectric loss of the carbon-based materials, which are still lacking so far. In this study, a clear correlation between microstructure and conduction loss was revealed in agarose-derived carbon using a facile salt-etching strategy, in which ferric nitrate acted more as a morphology modifier for bulky carbon rather than a component regulator. Specifically, with the increasing amount of ferric nitrate, the original smooth bulky carbon was etched with caves, which gradually enlarged in size and depth and thus thinned in wall, and eventually transformed into a three-dimensional (3D) interconnected cellular structure, accompanied by a gradual increase in conductivity. Benefiting from the optimal impedance matching and strong conduction loss originating from the unique 3D cellular structure of agarose-derived carbon, AF-3 exhibited super-wide and strong absorption with an effective absorption bandwidth of 7.28 GHz (10.32–17.60 GHz, 2.9 mm) and a minimum reflection loss of −46.6 dB (15.6 GHz, 2.5 mm). This study establishes the relationship between microstructure, dielectric properties, and loss mechanism in carbon-based materials and also provides a new insight into the fine modulation of EMW-absorbing properties from morphological design.</div></div>","PeriodicalId":16173,"journal":{"name":"Journal of Materiomics","volume":"11 4","pages":"Article 100927"},"PeriodicalIF":8.4000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materiomics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352847824001667","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Understanding the microstructure-property relationship from the microscopic and macroscopic perspectives, instead of semi-empirical rules, can facilitate the design of microcosmic morphology to adjust the impedance matching and dielectric loss of the carbon-based materials, which are still lacking so far. In this study, a clear correlation between microstructure and conduction loss was revealed in agarose-derived carbon using a facile salt-etching strategy, in which ferric nitrate acted more as a morphology modifier for bulky carbon rather than a component regulator. Specifically, with the increasing amount of ferric nitrate, the original smooth bulky carbon was etched with caves, which gradually enlarged in size and depth and thus thinned in wall, and eventually transformed into a three-dimensional (3D) interconnected cellular structure, accompanied by a gradual increase in conductivity. Benefiting from the optimal impedance matching and strong conduction loss originating from the unique 3D cellular structure of agarose-derived carbon, AF-3 exhibited super-wide and strong absorption with an effective absorption bandwidth of 7.28 GHz (10.32–17.60 GHz, 2.9 mm) and a minimum reflection loss of −46.6 dB (15.6 GHz, 2.5 mm). This study establishes the relationship between microstructure, dielectric properties, and loss mechanism in carbon-based materials and also provides a new insight into the fine modulation of EMW-absorbing properties from morphological design.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Materiomics
Journal of Materiomics Materials Science-Metals and Alloys
CiteScore
14.30
自引率
6.40%
发文量
331
审稿时长
37 days
期刊介绍: The Journal of Materiomics is a peer-reviewed open-access journal that aims to serve as a forum for the continuous dissemination of research within the field of materials science. It particularly emphasizes systematic studies on the relationships between composition, processing, structure, property, and performance of advanced materials. The journal is supported by the Chinese Ceramic Society and is indexed in SCIE and Scopus. It is commonly referred to as J Materiomics.
期刊最新文献
Electronic state reconstruction enabling high thermoelectric performance in Ti doped Sb2Te3 flexible thin films Solar fuel photocatalysis Editor corrections to “Influence of electrode contact arrangements on polarisation-electric field measurements of ferroelectric ceramics: A case study of BaTiO3” [J Materiomics 11 (2025) 100939] Texture modulation of ferroelectric Hf0.5Zr0.5O2 thin films by engineering the polymorphism and texture of tungsten electrodes Graphical Contents list
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1