Behavioral changes in Drosophila males after travel to International Space Station. Part II. Larvae vs. Imago

IF 3.1 2区 物理与天体物理 Q1 ENGINEERING, AEROSPACE Acta Astronautica Pub Date : 2025-01-13 DOI:10.1016/j.actaastro.2025.01.025
Julia V. Bragina , Larisa V. Danilenkova , Elena A. Kamysheva , Anna A. Goncharova , Sergei A. Fedotov , Olga N. Larina , Anna A. Burlakova , Natalia G. Besedina
{"title":"Behavioral changes in Drosophila males after travel to International Space Station. Part II. Larvae vs. Imago","authors":"Julia V. Bragina ,&nbsp;Larisa V. Danilenkova ,&nbsp;Elena A. Kamysheva ,&nbsp;Anna A. Goncharova ,&nbsp;Sergei A. Fedotov ,&nbsp;Olga N. Larina ,&nbsp;Anna A. Burlakova ,&nbsp;Natalia G. Besedina","doi":"10.1016/j.actaastro.2025.01.025","DOIUrl":null,"url":null,"abstract":"<div><div>This study aimed to establish a comprehensive behavioral profile of male Drosophila after a space flight to the International Space Station (ISS). Climbing, locomotor activity, and courtship behavior were examined after a 7.5-day space mission in Drosophila males. Behavioral evaluations postflight conducted both on Drosophila males, which, aged 1–2 days, had been sent to the ISS, and on males, who underwent development from first instar larvae to early pupal stages under space flight conditions. The results revealed that imago space travel resulted in a lasting decline in performance across all behavioral tests for no less than 13 days after landing. The larval development of Drosophila males during space travel leads to unstable behavioral issues that nevertheless go on up to 21 days after landing in such fruit flies. Space experience affects Drosophila nervous system function and changes the operating mode of walk and song central pattern generators (CPG). Future research will answer the question of which molecular genetic alterations induced by space flight factors are responsible for lasting post-space flight nervous system and behavioral changes.</div></div>","PeriodicalId":44971,"journal":{"name":"Acta Astronautica","volume":"229 ","pages":"Pages 192-198"},"PeriodicalIF":3.1000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Astronautica","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S009457652500027X","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0

Abstract

This study aimed to establish a comprehensive behavioral profile of male Drosophila after a space flight to the International Space Station (ISS). Climbing, locomotor activity, and courtship behavior were examined after a 7.5-day space mission in Drosophila males. Behavioral evaluations postflight conducted both on Drosophila males, which, aged 1–2 days, had been sent to the ISS, and on males, who underwent development from first instar larvae to early pupal stages under space flight conditions. The results revealed that imago space travel resulted in a lasting decline in performance across all behavioral tests for no less than 13 days after landing. The larval development of Drosophila males during space travel leads to unstable behavioral issues that nevertheless go on up to 21 days after landing in such fruit flies. Space experience affects Drosophila nervous system function and changes the operating mode of walk and song central pattern generators (CPG). Future research will answer the question of which molecular genetic alterations induced by space flight factors are responsible for lasting post-space flight nervous system and behavioral changes.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Acta Astronautica
Acta Astronautica 工程技术-工程:宇航
CiteScore
7.20
自引率
22.90%
发文量
599
审稿时长
53 days
期刊介绍: Acta Astronautica is sponsored by the International Academy of Astronautics. Content is based on original contributions in all fields of basic, engineering, life and social space sciences and of space technology related to: The peaceful scientific exploration of space, Its exploitation for human welfare and progress, Conception, design, development and operation of space-borne and Earth-based systems, In addition to regular issues, the journal publishes selected proceedings of the annual International Astronautical Congress (IAC), transactions of the IAA and special issues on topics of current interest, such as microgravity, space station technology, geostationary orbits, and space economics. Other subject areas include satellite technology, space transportation and communications, space energy, power and propulsion, astrodynamics, extraterrestrial intelligence and Earth observations.
期刊最新文献
China's space station and international law-making Italian Spring Accelerometer measurements of unexpected Non Gravitational Perturbation during BepiColombo second Venus swing-by Editorial Board LEIA: NASA's first biological mission on the lunar surface since 1972 Properties of novel LX lunar regolith simulant system — The base simulants: Part 1
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1