Automated characterization of arterial calcification in dental cone beam computed tomographic images as a risk factor for cardiovascular disease

IF 2 3区 医学 Q2 DENTISTRY, ORAL SURGERY & MEDICINE Oral Surgery Oral Medicine Oral Pathology Oral Radiology Pub Date : 2025-02-04 DOI:10.1016/j.oooo.2024.11.019
Dr. Amr Ahmed , Dr. Mina Mahdian
{"title":"Automated characterization of arterial calcification in dental cone beam computed tomographic images as a risk factor for cardiovascular disease","authors":"Dr. Amr Ahmed ,&nbsp;Dr. Mina Mahdian","doi":"10.1016/j.oooo.2024.11.019","DOIUrl":null,"url":null,"abstract":"<div><h3>Objectives</h3><div>This study aims to train and deploy a deep convolutional neural network, to automatically detect and localize arterial calcifications on cone beam computed tomography (CBCT) studies. Additionally, radiomics analysis will be performed to further characterize these calcifications using parameters such as, texture, voxel spatial distribution, signal intensity, etc., to estimate the risk of cardiovascular incidents</div></div><div><h3>Study Design</h3><div>CBCT scans acquired at Stony Brook University School of Dental Medicine Dental Care Center between 2015 and 2022 will be used for this study. Studies will be designated as determined by an oral and maxillofacial radiology resident, and confirmed by the report in the patient's Axium chart, signed by a board-certified oral maxillofacial radiologist. These volumes will be segmented by an oral radiology resident and pre-doctoral dental students and checked by a board certified oral and maxillofacial radiologist before submission to the artificial intelligence (AI) team.</div><div>An algorithm will be developed and trained on the mentioned data with the aims of (1) detecting carotid artery calcifications by using volumetric segmentations with unanimous interobserver agreement on the segmentation accuracy; (2) independently localizing and segmenting carotid artery calcifications (cervical and intracranial); (3) determining the accuracy at which the algorithm localizes, and segments carotid artery calcifications with explainable outcomes; and (4) correlating the extractable features of these findings with the risk of cardiovascular disease including stroke.</div></div><div><h3>Results</h3><div>The first set of CBCT volumes were segmented, verified, and are being processed for algorithm development and training. Results will be presented at the American Academy of Oral and Maxillofacial Radiology meeting.</div></div><div><h3>Conclusion</h3><div>It is expected that a CNN can be reliably trained to detect and segment arterial calcifications with accuracy similar to a trained oral and maxillofacial radiologist. Furthermore, the CNN is anticipated to deliver a predictive risk score for cardiovascular disease incidents based on the radiographic features.</div></div>","PeriodicalId":49010,"journal":{"name":"Oral Surgery Oral Medicine Oral Pathology Oral Radiology","volume":"139 3","pages":"Page e74"},"PeriodicalIF":2.0000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oral Surgery Oral Medicine Oral Pathology Oral Radiology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212440324008125","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
引用次数: 0

Abstract

Objectives

This study aims to train and deploy a deep convolutional neural network, to automatically detect and localize arterial calcifications on cone beam computed tomography (CBCT) studies. Additionally, radiomics analysis will be performed to further characterize these calcifications using parameters such as, texture, voxel spatial distribution, signal intensity, etc., to estimate the risk of cardiovascular incidents

Study Design

CBCT scans acquired at Stony Brook University School of Dental Medicine Dental Care Center between 2015 and 2022 will be used for this study. Studies will be designated as determined by an oral and maxillofacial radiology resident, and confirmed by the report in the patient's Axium chart, signed by a board-certified oral maxillofacial radiologist. These volumes will be segmented by an oral radiology resident and pre-doctoral dental students and checked by a board certified oral and maxillofacial radiologist before submission to the artificial intelligence (AI) team.
An algorithm will be developed and trained on the mentioned data with the aims of (1) detecting carotid artery calcifications by using volumetric segmentations with unanimous interobserver agreement on the segmentation accuracy; (2) independently localizing and segmenting carotid artery calcifications (cervical and intracranial); (3) determining the accuracy at which the algorithm localizes, and segments carotid artery calcifications with explainable outcomes; and (4) correlating the extractable features of these findings with the risk of cardiovascular disease including stroke.

Results

The first set of CBCT volumes were segmented, verified, and are being processed for algorithm development and training. Results will be presented at the American Academy of Oral and Maxillofacial Radiology meeting.

Conclusion

It is expected that a CNN can be reliably trained to detect and segment arterial calcifications with accuracy similar to a trained oral and maxillofacial radiologist. Furthermore, the CNN is anticipated to deliver a predictive risk score for cardiovascular disease incidents based on the radiographic features.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Oral Surgery Oral Medicine Oral Pathology Oral Radiology
Oral Surgery Oral Medicine Oral Pathology Oral Radiology DENTISTRY, ORAL SURGERY & MEDICINE-
CiteScore
3.80
自引率
6.90%
发文量
1217
审稿时长
2-4 weeks
期刊介绍: Oral Surgery, Oral Medicine, Oral Pathology and Oral Radiology is required reading for anyone in the fields of oral surgery, oral medicine, oral pathology, oral radiology or advanced general practice dentistry. It is the only major dental journal that provides a practical and complete overview of the medical and surgical techniques of dental practice in four areas. Topics covered include such current issues as dental implants, treatment of HIV-infected patients, and evaluation and treatment of TMJ disorders. The official publication for nine societies, the Journal is recommended for initial purchase in the Brandon Hill study, Selected List of Books and Journals for the Small Medical Library.
期刊最新文献
Editorial Board Table of Contents Information for Readers Society Page Coronoid process: cone beam computed tomography (CBCT) evaluation and proposal of radiographic classification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1