Viscochromism in a dual emitter metallopolymer containing terbium ions

IF 4 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Synthetic Metals Pub Date : 2024-11-29 DOI:10.1016/j.synthmet.2024.117802
Emerson C.G. Campos , Denis A. Turchetti , Raquel A. Domingues , Leni C. Akcelrud
{"title":"Viscochromism in a dual emitter metallopolymer containing terbium ions","authors":"Emerson C.G. Campos ,&nbsp;Denis A. Turchetti ,&nbsp;Raquel A. Domingues ,&nbsp;Leni C. Akcelrud","doi":"10.1016/j.synthmet.2024.117802","DOIUrl":null,"url":null,"abstract":"<div><div>Synthetic polymers containing lanthanide ions have emerged as materials with potential application in many areas, mainly due to the unique luminescent properties of these ions that complement those of their organic counterparts. The aim of this work is to strengthen the concept of chain rigidity in the emissive properties of this type of structures as previously proposed. For this purpose, the solvation effect on chain conformations was used as a probe, assuming that the higher the viscosity, the less mobile the chain will become. The higher rigidity as compared to the previous one was achieved by three ways: replacing the previous <em>ter</em>-pyridine sites by the less bulky <em>di</em>-pyridine ones; increasing the number of complexed lanthanide ions from 20 % to 80 % (molar basis) and inserting double bonds in place of single ones. The dual-emissive conjugated copolymer composed by fluorene-bipyridine units carrying complexed terbium ions, was synthesized and characterized by structural, thermal and photophysical measurements. The terbium emission occurs in dimethylsulfoxide (DMSO) and <em>N,N</em>–dimethylformamide (DMF) only, and its luminescence was not observed in other solvents tested. The photophysical measurements strongly suggest that the lanthanide luminescence is brought about by solvent effect in polymer’s main chain, minimizing non-radiative energy losses by restriction of intramolecular motion (RIM) due to properties of poor solvents and their high viscosity. These factors combined promoted aggregation-induced emission (AIE).</div></div>","PeriodicalId":22245,"journal":{"name":"Synthetic Metals","volume":"311 ","pages":"Article 117802"},"PeriodicalIF":4.0000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Synthetic Metals","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0379677924002649","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Synthetic polymers containing lanthanide ions have emerged as materials with potential application in many areas, mainly due to the unique luminescent properties of these ions that complement those of their organic counterparts. The aim of this work is to strengthen the concept of chain rigidity in the emissive properties of this type of structures as previously proposed. For this purpose, the solvation effect on chain conformations was used as a probe, assuming that the higher the viscosity, the less mobile the chain will become. The higher rigidity as compared to the previous one was achieved by three ways: replacing the previous ter-pyridine sites by the less bulky di-pyridine ones; increasing the number of complexed lanthanide ions from 20 % to 80 % (molar basis) and inserting double bonds in place of single ones. The dual-emissive conjugated copolymer composed by fluorene-bipyridine units carrying complexed terbium ions, was synthesized and characterized by structural, thermal and photophysical measurements. The terbium emission occurs in dimethylsulfoxide (DMSO) and N,N–dimethylformamide (DMF) only, and its luminescence was not observed in other solvents tested. The photophysical measurements strongly suggest that the lanthanide luminescence is brought about by solvent effect in polymer’s main chain, minimizing non-radiative energy losses by restriction of intramolecular motion (RIM) due to properties of poor solvents and their high viscosity. These factors combined promoted aggregation-induced emission (AIE).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Synthetic Metals
Synthetic Metals 工程技术-材料科学:综合
CiteScore
8.30
自引率
4.50%
发文量
189
审稿时长
33 days
期刊介绍: This journal is an international medium for the rapid publication of original research papers, short communications and subject reviews dealing with research on and applications of electronic polymers and electronic molecular materials including novel carbon architectures. These functional materials have the properties of metals, semiconductors or magnets and are distinguishable from elemental and alloy/binary metals, semiconductors and magnets.
期刊最新文献
Up-and-coming MXene-based nanohybrids for electrochemical non-enzymatic glucose sensing: A brief review Investigating charge mobility of alternating copolymers: The role of comonomers and electron-lattice interaction Novel synthesis of reduced graphene oxide-decorated antimony sulfide nanoparticles via pulsed laser ablation in liquid for photovoltaic applications Semi-planar-semi-twisted selenophen-containing narrow bandgap small molecules for efficient polymer solar cells Proton exchange assisted charge conduction and enhanced humidity sensitivity of polyvinyl pyrrolidone incorporated polyaniline
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1