Effect of current density on electrochemical machining process of laser powder bed fusion manufactured Inconel 718

IF 6.7 2区 材料科学 Q1 ENGINEERING, INDUSTRIAL Journal of Materials Processing Technology Pub Date : 2025-01-27 DOI:10.1016/j.jmatprotec.2025.118748
Pengfei Guo , André Martin , Changshuai Zhai , Zuo Li , Xufei Lu , Jun Yu , Xin Lin , Inger Odnevall , Michael Gibbons , Andreas Schubert
{"title":"Effect of current density on electrochemical machining process of laser powder bed fusion manufactured Inconel 718","authors":"Pengfei Guo ,&nbsp;André Martin ,&nbsp;Changshuai Zhai ,&nbsp;Zuo Li ,&nbsp;Xufei Lu ,&nbsp;Jun Yu ,&nbsp;Xin Lin ,&nbsp;Inger Odnevall ,&nbsp;Michael Gibbons ,&nbsp;Andreas Schubert","doi":"10.1016/j.jmatprotec.2025.118748","DOIUrl":null,"url":null,"abstract":"<div><div>Electrolytic jet machining (EJM) has been widely recognized as one of the effective methods for the surface post-processing of the laser powder bed fusion (LPBF)-components. However, this concept remains challenging due to the limited machining allowance of the LPBF-components and the complexed anodic dissolution behavior, which determine the dimensional accuracy and surface quality of the machined workpiece, respectively. In this work, high current densities ( ≥ 100 A/cm<sup>2</sup>) are novelly employed to investigate the leveling ratio and transpassive dissolution behavior of LPBF-Inconel 718 for the first time. Compared to 100 A/cm<sup>2</sup>, 200 A/cm<sup>2</sup> improves the leveling ratio to 58.9 % from 57.1 % when the surface roughness is less than 1 µm. However, the high current density up to 200 A/cm<sup>2</sup> still cannot inhibit the selective dissolution of the inhomogeneous microstructure, which limits further reduction of the surface roughness. A high current density leads to a rougher micro-surface on horizontal section than low current density, caused by more Nb oxides attached on the horizontal section at high current density generate from continuously distributed Nb-segregation γ phase along the machining depth direction. In addition, the local fine dendrites on vertical section result in a smooth EJM-surface, owing to the relatively uniform dissolution. This investigation provides systematic understanding of leveling process and transpassive dissolution behavior under high current density with complex surface and microstructure, which can further promote synergetic improvements of the surface integrity and dimensional tolerance through controlling the EJM parameters.</div></div>","PeriodicalId":367,"journal":{"name":"Journal of Materials Processing Technology","volume":"337 ","pages":"Article 118748"},"PeriodicalIF":6.7000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Processing Technology","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S092401362500038X","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 0

Abstract

Electrolytic jet machining (EJM) has been widely recognized as one of the effective methods for the surface post-processing of the laser powder bed fusion (LPBF)-components. However, this concept remains challenging due to the limited machining allowance of the LPBF-components and the complexed anodic dissolution behavior, which determine the dimensional accuracy and surface quality of the machined workpiece, respectively. In this work, high current densities ( ≥ 100 A/cm2) are novelly employed to investigate the leveling ratio and transpassive dissolution behavior of LPBF-Inconel 718 for the first time. Compared to 100 A/cm2, 200 A/cm2 improves the leveling ratio to 58.9 % from 57.1 % when the surface roughness is less than 1 µm. However, the high current density up to 200 A/cm2 still cannot inhibit the selective dissolution of the inhomogeneous microstructure, which limits further reduction of the surface roughness. A high current density leads to a rougher micro-surface on horizontal section than low current density, caused by more Nb oxides attached on the horizontal section at high current density generate from continuously distributed Nb-segregation γ phase along the machining depth direction. In addition, the local fine dendrites on vertical section result in a smooth EJM-surface, owing to the relatively uniform dissolution. This investigation provides systematic understanding of leveling process and transpassive dissolution behavior under high current density with complex surface and microstructure, which can further promote synergetic improvements of the surface integrity and dimensional tolerance through controlling the EJM parameters.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Materials Processing Technology
Journal of Materials Processing Technology 工程技术-材料科学:综合
CiteScore
12.60
自引率
4.80%
发文量
403
审稿时长
29 days
期刊介绍: The Journal of Materials Processing Technology covers the processing techniques used in manufacturing components from metals and other materials. The journal aims to publish full research papers of original, significant and rigorous work and so to contribute to increased production efficiency and improved component performance. Areas of interest to the journal include: • Casting, forming and machining • Additive processing and joining technologies • The evolution of material properties under the specific conditions met in manufacturing processes • Surface engineering when it relates specifically to a manufacturing process • Design and behavior of equipment and tools.
期刊最新文献
Comprehensive regulation of carbon nanotubes on laser welded joints of aluminum alloy: From morphology, solidification, microtexture to properties Localized high-temperature laser shock peening with adjustable metallic coatings method for mechanical properties enhancement of reflective aluminum alloys Imprinting nanostructures on metallic surface via underwater electrical wire explosion shock waves Enhanced strength-ductility of deposited Al-Mg-Sc alloy through interlayer hammering and in-situ heating Ultrafast laser micro-texturing of joining surface combined with ultrasonic vibration-assisted friction stir joining to fabricate Zr-based metallic glass parts
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1