Study of the nitrogen fluorescence yield under different environmental conditions in alpha radioactivity telemetry technique

IF 1.4 3区 物理与天体物理 Q3 INSTRUMENTS & INSTRUMENTATION Nuclear Instruments & Methods in Physics Research Section B-beam Interactions With Materials and Atoms Pub Date : 2025-02-01 DOI:10.1016/j.nimb.2024.165605
Quanxiao Wang , Wanlin Li , Xinfeng Pei , Binghua Song , Junliang Chen , Yiqiang Zhong , Lianshun Li , Jian Wang , Tinggui Yang , Shuyao Si , Kaihong Fang
{"title":"Study of the nitrogen fluorescence yield under different environmental conditions in alpha radioactivity telemetry technique","authors":"Quanxiao Wang ,&nbsp;Wanlin Li ,&nbsp;Xinfeng Pei ,&nbsp;Binghua Song ,&nbsp;Junliang Chen ,&nbsp;Yiqiang Zhong ,&nbsp;Lianshun Li ,&nbsp;Jian Wang ,&nbsp;Tinggui Yang ,&nbsp;Shuyao Si ,&nbsp;Kaihong Fang","doi":"10.1016/j.nimb.2024.165605","DOIUrl":null,"url":null,"abstract":"<div><div>α Decay in the nuclear fuel cycle poses significant hazards due to its strong ionizing capability, making effective detection essential. Conventional detection methods require time-consuming scanning or sampling, often unsuitable for extreme environments and increasing radiation risks. Alpha Radioactivity Telemetry Technology (ARTT), a non-contact α radiation detecting method via secondary nitrogen fluorescence detection, addresses the limitations of traditional methods and has gained significant attention in recent years. However, limited research on α-induced nitrogen fluorescence under varying conditions hampers environmental corrections and quantitative analysis, constraining applications of ARTT. This article examines the dependence of α-induced nitrogen fluorescence yield on energy, pressure, humidity, and nitrogen–oxygen ratio, presenting measurements for all major 2P system emission bands. The results indicate that (1) fluorescence yield remains unaffected by deposited energy or α-ray energy within 1.5–4 MeV, (2) yield dependence on pressure and humidity aligns with theoretical expectations, but deviates for nitrogen–oxygen ratios, and (3) temperature has minimal impact, with a 30 °C variation around 25 °C affecting fluorescence yield by less than 5 %. In contrast, at 1 atm pressure, the yield of air is several hundred times greater than at zero pressure. At 25 °C, the yield of dry air is 1.4 times that of air at 100 % RH. And the one of pure nitrogen is over ten times higher than the gas with 20 % nitrogen and 80 % oxygen. This work provides a data foundation for environmental corrections in ARTT applications.</div></div>","PeriodicalId":19380,"journal":{"name":"Nuclear Instruments & Methods in Physics Research Section B-beam Interactions With Materials and Atoms","volume":"559 ","pages":"Article 165605"},"PeriodicalIF":1.4000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Instruments & Methods in Physics Research Section B-beam Interactions With Materials and Atoms","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168583X24003756","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0

Abstract

α Decay in the nuclear fuel cycle poses significant hazards due to its strong ionizing capability, making effective detection essential. Conventional detection methods require time-consuming scanning or sampling, often unsuitable for extreme environments and increasing radiation risks. Alpha Radioactivity Telemetry Technology (ARTT), a non-contact α radiation detecting method via secondary nitrogen fluorescence detection, addresses the limitations of traditional methods and has gained significant attention in recent years. However, limited research on α-induced nitrogen fluorescence under varying conditions hampers environmental corrections and quantitative analysis, constraining applications of ARTT. This article examines the dependence of α-induced nitrogen fluorescence yield on energy, pressure, humidity, and nitrogen–oxygen ratio, presenting measurements for all major 2P system emission bands. The results indicate that (1) fluorescence yield remains unaffected by deposited energy or α-ray energy within 1.5–4 MeV, (2) yield dependence on pressure and humidity aligns with theoretical expectations, but deviates for nitrogen–oxygen ratios, and (3) temperature has minimal impact, with a 30 °C variation around 25 °C affecting fluorescence yield by less than 5 %. In contrast, at 1 atm pressure, the yield of air is several hundred times greater than at zero pressure. At 25 °C, the yield of dry air is 1.4 times that of air at 100 % RH. And the one of pure nitrogen is over ten times higher than the gas with 20 % nitrogen and 80 % oxygen. This work provides a data foundation for environmental corrections in ARTT applications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.80
自引率
7.70%
发文量
231
审稿时长
1.9 months
期刊介绍: Section B of Nuclear Instruments and Methods in Physics Research covers all aspects of the interaction of energetic beams with atoms, molecules and aggregate forms of matter. This includes ion beam analysis and ion beam modification of materials as well as basic data of importance for these studies. Topics of general interest include: atomic collisions in solids, particle channelling, all aspects of collision cascades, the modification of materials by energetic beams, ion implantation, irradiation - induced changes in materials, the physics and chemistry of beam interactions and the analysis of materials by all forms of energetic radiation. Modification by ion, laser and electron beams for the study of electronic materials, metals, ceramics, insulators, polymers and other important and new materials systems are included. Related studies, such as the application of ion beam analysis to biological, archaeological and geological samples as well as applications to solve problems in planetary science are also welcome. Energetic beams of interest include atomic and molecular ions, neutrons, positrons and muons, plasmas directed at surfaces, electron and photon beams, including laser treated surfaces and studies of solids by photon radiation from rotating anodes, synchrotrons, etc. In addition, the interaction between various forms of radiation and radiation-induced deposition processes are relevant.
期刊最新文献
Differential cross section measurement of the reactions 16O(d, p0,1)17O for Nuclear Reaction Analysis (NRA) Principle design of a high-power graphite target for the HFRS separator at HIAF Short-range interactions in the N(4S)H+ and N+ (3P)H(2S) collisions: Cross sections and nuclear stopping power A method to detect the VUV photons from cooled 229Th:CaF2 crystals Scattering effects on X-ray imaging of bubbly flow in metal pipes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1