Network pharmacology and experimental verification reveal the mechanism of Qingfei Tongluo mixture in treating pulmonary fibrosis

IF 2.3 4区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Electronic Journal of Biotechnology Pub Date : 2025-01-01 DOI:10.1016/j.ejbt.2024.10.002
Ying Zhou , Wenlong Wang , Wanping Zhu , Tingting Cai , Nannan Wang , Xia Liu , Wenmin Wang , Kequn Chai
{"title":"Network pharmacology and experimental verification reveal the mechanism of Qingfei Tongluo mixture in treating pulmonary fibrosis","authors":"Ying Zhou ,&nbsp;Wenlong Wang ,&nbsp;Wanping Zhu ,&nbsp;Tingting Cai ,&nbsp;Nannan Wang ,&nbsp;Xia Liu ,&nbsp;Wenmin Wang ,&nbsp;Kequn Chai","doi":"10.1016/j.ejbt.2024.10.002","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Pulmonary fibrosis (PF) is a chronic interstitial lung disease posing significant health risks. This study aimed to investigate the therapeutic mechanism of Qingfei Tongluo mixture (QTm) in treating PF by combining network pharmacology and experimental verification.</div></div><div><h3>Results</h3><div>A total of 246 active ingredients in QTm were identified, with 159 potential targets for PF treatment. Quercetin, a key active ingredient, was associated with the TGF-β1 signaling pathway. Gene Ontology and KEGG enrichment analyses identified 42 core genes, with a notable implication of the TGF-beta signaling pathway in PF. Immunohistochemistry showed elevated FTO and TGF-β1 levels in PF tissues. Animal experiments demonstrated that QTm improved alveolar structure, reduced interstitial lesions, and enhanced lung function while decreasing hydroxyproline content and the expression of FTO and TGF-β1 proteins.</div></div><div><h3>Conclusions</h3><div>QTm may inhibit PF progression by suppressing FTO/TGF-β1 expression, thereby improving lung function. These findings suggest that QTm holds potential as a treatment for PF.</div><div><strong>How to cite:</strong> Zhou Y, Wang W, Zhu W, et al. Network pharmacology and experimental verification reveal the mechanism of Qingfei Tongluo mixture in treating pulmonary fibrosis. Electron J Biotechnol 2025;73. <span><span>https://doi.org/10.1016/j.ejbt.2024.10.002</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":11529,"journal":{"name":"Electronic Journal of Biotechnology","volume":"73 ","pages":"Pages 38-47"},"PeriodicalIF":2.3000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0717345824000307","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background

Pulmonary fibrosis (PF) is a chronic interstitial lung disease posing significant health risks. This study aimed to investigate the therapeutic mechanism of Qingfei Tongluo mixture (QTm) in treating PF by combining network pharmacology and experimental verification.

Results

A total of 246 active ingredients in QTm were identified, with 159 potential targets for PF treatment. Quercetin, a key active ingredient, was associated with the TGF-β1 signaling pathway. Gene Ontology and KEGG enrichment analyses identified 42 core genes, with a notable implication of the TGF-beta signaling pathway in PF. Immunohistochemistry showed elevated FTO and TGF-β1 levels in PF tissues. Animal experiments demonstrated that QTm improved alveolar structure, reduced interstitial lesions, and enhanced lung function while decreasing hydroxyproline content and the expression of FTO and TGF-β1 proteins.

Conclusions

QTm may inhibit PF progression by suppressing FTO/TGF-β1 expression, thereby improving lung function. These findings suggest that QTm holds potential as a treatment for PF.
How to cite: Zhou Y, Wang W, Zhu W, et al. Network pharmacology and experimental verification reveal the mechanism of Qingfei Tongluo mixture in treating pulmonary fibrosis. Electron J Biotechnol 2025;73. https://doi.org/10.1016/j.ejbt.2024.10.002.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Electronic Journal of Biotechnology
Electronic Journal of Biotechnology 工程技术-生物工程与应用微生物
CiteScore
5.60
自引率
0.00%
发文量
50
审稿时长
2 months
期刊介绍: Electronic Journal of Biotechnology is an international scientific electronic journal, which publishes papers from all areas related to Biotechnology. It covers from molecular biology and the chemistry of biological processes to aquatic and earth environmental aspects, computational applications, policy and ethical issues directly related to Biotechnology. The journal provides an effective way to publish research and review articles and short communications, video material, animation sequences and 3D are also accepted to support and enhance articles. The articles will be examined by a scientific committee and anonymous evaluators and published every two months in HTML and PDF formats (January 15th , March 15th, May 15th, July 15th, September 15th, November 15th). The following areas are covered in the Journal: • Animal Biotechnology • Biofilms • Bioinformatics • Biomedicine • Biopolicies of International Cooperation • Biosafety • Biotechnology Industry • Biotechnology of Human Disorders • Chemical Engineering • Environmental Biotechnology • Food Biotechnology • Marine Biotechnology • Microbial Biotechnology • Molecular Biology and Genetics •Nanobiotechnology • Omics • Plant Biotechnology • Process Biotechnology • Process Chemistry and Technology • Tissue Engineering
期刊最新文献
Whole-transcriptome analysis reveals the characteristics of intramuscular fat circRNA expression and its associated network in grazing yaks of different months of age under cold stress Network pharmacology and experimental verification reveal the mechanism of Qingfei Tongluo mixture in treating pulmonary fibrosis A sustainable exploitation of high-protein feather waste for production of cold-adapted keratinase by Penicillium lanosocoeruleum KSA-55 Development of a chemically defined medium for Yarrowia yeasts using a strategy of biological mimicry Evaluation of high-value bioproducts production by marine endophytic fungus Arthrinium sp. FAKSA 10 under solid state fermentation using agro-industrial wastes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1