Advances in mechanism and application of diffusion bonding of titanium alloys

IF 6.7 2区 材料科学 Q1 ENGINEERING, INDUSTRIAL Journal of Materials Processing Technology Pub Date : 2025-01-14 DOI:10.1016/j.jmatprotec.2025.118736
Tianle Li , Yiwen Lei , Lezong Chen , Heng Ye , Xiaochun Liu , Xifeng Li
{"title":"Advances in mechanism and application of diffusion bonding of titanium alloys","authors":"Tianle Li ,&nbsp;Yiwen Lei ,&nbsp;Lezong Chen ,&nbsp;Heng Ye ,&nbsp;Xiaochun Liu ,&nbsp;Xifeng Li","doi":"10.1016/j.jmatprotec.2025.118736","DOIUrl":null,"url":null,"abstract":"<div><div>Diffusion bonding (DB) has emerged as a prevalent and versatile materials processing technique for titanium (Ti) alloy parts and composites, producing high-quality joints and supporting continuous manufacturing. The diffusion bonding procedure has gained significant attention in producing complex components for the electronics and aerospace industries, especially the bonding of dissimilar materials. A comprehensive understanding of the diffusion bonding of titanium and its alloys is valuable in guiding future research endeavors. However, to our knowledge, no one has reported a systematic overview of this topic. Herein, a comprehensive overview of the diffusion bonding for titanium and its alloys was provided. Firstly, the diffusion bonding processing theory, void closure criterion, and atomic interdiffusion were revealed. Secondly, the existing knowledge on the microstructural evolution and joint properties in titanium materials and the recent research progress was summarized. Thirdly, extending the improvements and engineering applications of the diffusion bonding process responses to the emergence of advanced materials and the increasing demand for application environments. Lastly, the current challenges in studying the diffusion bonding of titanium and its alloys were identified and discussed. This review provides useful insight into understanding and developing a high-performance novel diffusion bonding process.</div></div>","PeriodicalId":367,"journal":{"name":"Journal of Materials Processing Technology","volume":"337 ","pages":"Article 118736"},"PeriodicalIF":6.7000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Processing Technology","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0924013625000263","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 0

Abstract

Diffusion bonding (DB) has emerged as a prevalent and versatile materials processing technique for titanium (Ti) alloy parts and composites, producing high-quality joints and supporting continuous manufacturing. The diffusion bonding procedure has gained significant attention in producing complex components for the electronics and aerospace industries, especially the bonding of dissimilar materials. A comprehensive understanding of the diffusion bonding of titanium and its alloys is valuable in guiding future research endeavors. However, to our knowledge, no one has reported a systematic overview of this topic. Herein, a comprehensive overview of the diffusion bonding for titanium and its alloys was provided. Firstly, the diffusion bonding processing theory, void closure criterion, and atomic interdiffusion were revealed. Secondly, the existing knowledge on the microstructural evolution and joint properties in titanium materials and the recent research progress was summarized. Thirdly, extending the improvements and engineering applications of the diffusion bonding process responses to the emergence of advanced materials and the increasing demand for application environments. Lastly, the current challenges in studying the diffusion bonding of titanium and its alloys were identified and discussed. This review provides useful insight into understanding and developing a high-performance novel diffusion bonding process.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Materials Processing Technology
Journal of Materials Processing Technology 工程技术-材料科学:综合
CiteScore
12.60
自引率
4.80%
发文量
403
审稿时长
29 days
期刊介绍: The Journal of Materials Processing Technology covers the processing techniques used in manufacturing components from metals and other materials. The journal aims to publish full research papers of original, significant and rigorous work and so to contribute to increased production efficiency and improved component performance. Areas of interest to the journal include: • Casting, forming and machining • Additive processing and joining technologies • The evolution of material properties under the specific conditions met in manufacturing processes • Surface engineering when it relates specifically to a manufacturing process • Design and behavior of equipment and tools.
期刊最新文献
Metal droplet ejection technology based on water hammer effect for additive manufacturing Editorial Board Microstructural mechanisms and mechanical behavior of friction-stir-welded Mg alloy laminate joints Relaxation of residual stress in aluminum alloy rings by pulsed high magnetic field: Relieving mechanisms and performance evaluation Manufacture of ultra-smooth surface with low damage by elastic emission machining
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1